Neural Random Forests
Autor: | Gérard Biau, Erwan Scornet, Johannes Welbl |
---|---|
Přispěvatelé: | Laboratoire de Probabilités et Modèles Aléatoires (LPMA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Statistique Théorique et Appliquée (LSTA), Université Pierre et Marie Curie - Paris 6 (UPMC), University College of London [London] (UCL) |
Rok vydání: | 2018 |
Předmět: |
FOS: Computer and information sciences
Statistics and Probability Exploit Computer science Mathematics - Statistics Theory Machine Learning (stat.ML) Statistics Theory (math.ST) randomization sparse networks Machine learning computer.software_genre 01 natural sciences Machine Learning (cs.LG) 010104 statistics & probability 03 medical and health sciences Consistency (database systems) 0302 clinical medicine Statistics - Machine Learning [MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] FOS: Mathematics 0101 mathematics Artificial neural network business.industry ensemble methods Random forests neural networks Ensemble learning Regression Random forest Variety (cybernetics) Connection (mathematics) Computer Science - Learning Artificial intelligence Statistics Probability and Uncertainty business computer 030217 neurology & neurosurgery |
Zdroj: | Sankhya A. 81:347-386 |
ISSN: | 0976-8378 0976-836X |
DOI: | 10.1007/s13171-018-0133-y |
Popis: | Given an ensemble of randomized regression trees, it is possible to restructure them as a collection of multilayered neural networks with particular connection weights. Following this principle, we reformulate the random forest method of Breiman (2001) into a neural network setting, and in turn propose two new hybrid procedures that we call neural random forests. Both predictors exploit prior knowledge of regression trees for their architecture, have less parameters to tune than standard networks, and less restrictions on the geometry of the decision boundaries than trees. Consistency results are proved, and substantial numerical evidence is provided on both synthetic and real data sets to assess the excellent performance of our methods in a large variety of prediction problems. |
Databáze: | OpenAIRE |
Externí odkaz: |