Beltrami equations in the plane and Sobolev regularity

Autor: Martí Prats
Rok vydání: 2018
Předmět:
Zdroj: Communications on Pure & Applied Analysis. 17:319-332
ISSN: 1553-5258
DOI: 10.3934/cpaa.2018018
Popis: New results regarding the Sobolev regularity of the principal solution of the linear Beltrami equation $\bar{\partial} f = \mu \partial f + \nu \overline{\partial f}$ for discontinuous Beltrami coefficients $\mu$ and $\nu$ are obtained, using Kato-Ponce commutators, obtaining that $\overline \partial f$ belongs to a Sobolev space with the same smoothness as the coefficients but some loss in the integrability parameter. A conjecture on the cases where the limitations of the method do not work is raised.
Comment: 13 pages, 12 figures
Databáze: OpenAIRE