On the minimality of Keplerian arcs with fixed negative energy

Autor: Vivina Barutello, Alberto Boscaggin, Walter Dambrosio
Rok vydání: 2019
Předmět:
DOI: 10.48550/arxiv.1910.06681
Popis: We revisit a classical result by Jacobi (J Reine Angew Math 17:68–82, 1837) on the local minimality, as critical points of the corresponding energy functional, of fixed-energy solutions of the Kepler equation joining two distinct points with the same distance from the origin. Our proof relies on the Morse index theorem, together with a characterization of the conjugate points as points of geodesic bifurcation.
Databáze: OpenAIRE