Irreducibility of Hypersurfaces
Autor: | Arnaud Bodin, Salah Najib, Pierre Dèbes |
---|---|
Rok vydání: | 2009 |
Předmět: |
Discrete mathematics
Factor theorem Polynomial Algebra and Number Theory Mathematics - Number Theory Irreducible polynomial Commutative Algebra (math.AC) Mathematics - Commutative Algebra Mathematics - Algebraic Geometry 11C08 FOS: Mathematics 12E05 Irreducibility Number Theory (math.NT) Algebraically closed field Algebraic Geometry (math.AG) Mathematics |
Zdroj: | Communications in Algebra. 37:1884-1900 |
ISSN: | 1532-4125 0092-7872 |
DOI: | 10.1080/00927870802116562 |
Popis: | Given a polynomial P in several variables over an algebraically closed field, we show that except in some special cases that we fully describe, if one coefficient is allowed to vary, then the polynomial is irreducible for all but at most deg(P)^2-1 values of the coefficient. We more generally handle the situation where several specified coefficients vary. 21 pages |
Databáze: | OpenAIRE |
Externí odkaz: |