Privileged hydration sites in aromatic side chains: effect on conformational equilibrium

Autor: Fernando Pflüger, Belén Hernández, Mahmoud Ghomi, Manuel Dauchez
Přispěvatelé: Laboratoire de physicochimie biomoléculaire et cellulaire (LPBC), Université Paris 13 (UP13)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Matrice extracellulaire et dynamique cellulaire - UMR 7369 (MEDyC), Université de Reims Champagne-Ardenne (URCA)-SFR CAP Santé (Champagne-Ardenne Picardie Santé), Université de Reims Champagne-Ardenne (URCA)-Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS), UFR Santé, Médecine et Biologie Humaine (UFR SMBH), Université Paris 13 (UP13), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris 13 (UP13)-Centre National de la Recherche Scientifique (CNRS), Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics, 2017, 19 (42), pp.28684-28695. ⟨10.1039/c7cp04685e⟩
Physical Chemistry Chemical Physics, Royal Society of Chemistry, 2017, 19 (42), pp.28684-28695. ⟨10.1039/c7cp04685e⟩
ISSN: 1463-9076
1463-9084
DOI: 10.1039/c7cp04685e⟩
Popis: Water interaction with peptide chains is one of the key structure stabilizing factors in an aqueous environment. Because of its strong polar character, water can bind to both anionic and cationic sites via electrostatic interactions. It can also act as a hydrogen-bond donor or acceptor according to its interactions with different polar groups in the backbone and side chains of peptides and proteins. Based on density functional theory calculations, the present report aims at illustrating the most energetically favorable interaction sites of aromatic side chains of phenylalanine, tyrosine, tryptophan, and histidine (neutral and protonated species) with surrounding water molecules. It was shown that beyond the strong interactions occurring between water and the aromatic ring acceptor/donor sites, such as O–H, N–H and –N groups, weaker interactions with π-electron clouds should also be considered. The latter type of binding, hereafter referred to as Hw⋯π interaction, involves one of the water hydrogen atoms (Hw) pointing toward the aromatic ring. Upon comparison between the theoretical data obtained from a purely implicit hydration model, i.e. a polarized solvent continuum, and those collected from a mixture of implicit and explicit hydration models, it has been shown that the explicit water molecule binding to aromatic rings affects the relative energies of the rotamers generated by the two side chain torsion angles (χ1 and χ2).
Databáze: OpenAIRE