Sub-ambient pressure IR-MALDI ion mobility spectrometer for the determination of low and high field mobilities

Autor: Martin Zühlke, José Villatoro, Marcus Weber, Hans-Gerd Löhmannsröben, Daniel Riebe, Toralf Beitz
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Popis: A new ion mobility (IM) spectrometer, enabling mobility measurements in the pressure range between 5 and 500 mbar and in the reduced field strength range E/N of 5-90 Td, was developed and characterized. Reduced mobility (K-0) values were studied under low E/N (constant value) as well as high E/N (deviation from low field K-0) for a series of molecular ions in nitrogen. Infrared matrix-assisted laser desorption ionization (IR-MALDI) was used in two configurations: a source working at atmospheric pressure (AP) and, for the first time, an IR-MALDI source working with a liquid (aqueous) matrix at sub-ambient/reduced pressure (RP). The influence of RP on IR-MALDI was examined and new insights into the dispersion process were gained. This enabled the optimization of the IM spectrometer for best analytical performance. While ion desolvation is less efficient at RP, the transport of ions is more efficient, leading to intensity enhancement and an increased number of oligomer ions. When deciding between AP and RP IR-MALDI, a trade-off between intensity and resolving power has to be considered. Here, the low field mobility of peptide ions was first measured and compared with reference values from ESI-IM spectrometry (at AP) as well as collision cross sections obtained from molecular dynamics simulations. The second application was the determination of the reduced mobility of various substituted ammonium ions as a function of E/N in nitrogen. The mobility is constant up to a threshold at high E/N. Beyond this threshold, mobility increases were observed. This behavior can be explained by the loss of hydrated water molecules.
Databáze: OpenAIRE