An Application of Shadow Systems to Mahler’s Conjecture
Autor: | Artem Zvavitch, Mathieu Meyer, Matthieu Fradelizi |
---|---|
Přispěvatelé: | Laboratoire d'Analyse et de Mathématiques Appliquées (LAMA), Université Paris-Est Marne-la-Vallée (UPEM)-Fédération de Recherche Bézout-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Department of Mathematical Sciences Kent State University, Kent State University, U.S.~National Science Foundation grant DMS-1101636 and Université Paris-Est Marne-la-Vallée, Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Fédération de Recherche Bézout-Université Paris-Est Marne-la-Vallée (UPEM) |
Rok vydání: | 2012 |
Předmět: |
Convex Polytopes
Convex hull Polar Bodies 0102 computer and information sciences [MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA] 01 natural sciences Upper and lower bounds Theoretical Computer Science Combinatorics Shadow Systems Santaló Point Discrete Mathematics and Combinatorics 0101 mathematics Convex Bodies Mathematics Conjecture Simplex 010102 general mathematics Center (category theory) Computational Theory and Mathematics 010201 computation theory & mathematics Unit cube Product (mathematics) Convex body 52A40 53A15 52B10 Geometry and Topology Volume Product |
Zdroj: | Discrete and Computational Geometry Discrete and Computational Geometry, Springer Verlag, 2012, 48 (3), pp.721-734. ⟨10.1007/s00454-012-9435-3⟩ |
ISSN: | 1432-0444 0179-5376 |
DOI: | 10.1007/s00454-012-9435-3 |
Popis: | International audience; We elaborate on the use of shadow systems to prove a particular case of the conjectured lower bound of the volume product $\mathcal{P}(K)=\min_{z\in {\rm int}(K)}|K|||K^z|$, where $K\subset \R^n$ is a convex body and $ K^z = \{y\in\R^n : (y-z) \cdot(x-z)\le 1 \mbox{\ for all\ } x\in K\}$ is the polar body of $K$ with respect to the center of polarity $z$. In particular, we show that if $K\subset \R^3$ is the convex hull of two $2$-dimensional convex bodies, then $\mathcal{P}(K) \ge \mathcal{P}(\Delta^3)$, where $\Delta^3$ is a $3$-dimensional simplex, thus confirming the $3$-dimensional case of Mahler conjecture, for this class of bodies. A similar result is provided for the symmetric case, where we prove that if $K\subset \R^3$ is symmetric and the convex hull of two $2$-dimensional convex bodies, then $\mathcal{P}(K) \ge \mathcal{P}(B_\infty^3)$, where $B_\infty^3$ is the unit cube. |
Databáze: | OpenAIRE |
Externí odkaz: |