Imaging localized neuronal activity at fast time scales through biomechanics

Autor: Miklos Palotai, Katharina Schregel, Alexander Hammers, Sverre Holm, Sebastian Kozerke, Paul E. Barbone, Daniel Fovargue, Ralph Sinkus, Samuel Patz, Ben Fabry, Navid Nazari, David Nordsletten
Přispěvatelé: Laboratoire de Recherche Vasculaire Translationnelle (LVTS (UMR_S_1148 / U1148)), Université Paris 13 (UP13)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de la Santé et de la Recherche Médicale (INSERM), University of Zurich, Patz, Samuel, Boston University [Boston] (BU), Biophysics Group Friedrich-Alexander University, Centre d'Etude et de Recherche Multimodal Et Pluridisciplinaire en imagerie du vivant (CERMEP - imagerie du vivant), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-CHU Grenoble-Hospices Civils de Lyon (HCL)-CHU Saint-Etienne-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institute for Biomedical Engineering [ETH Zürich] (IBT), Universität Zürich [Zürich] = University of Zurich (UZH)-Department of Information Technology and Electrical Engineering [Zürich] (D-ITET), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)- Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Imaging Sciences and Biomedical Engineering Division [London], Guy's and St Thomas' Hospital [London]-King‘s College London, Physique des ondes pour la médecine, Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging
[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology
[SDV]Life Sciences [q-bio]
030218 nuclear medicine & medical imaging
170 Ethics
Mice
0302 clinical medicine
Thalamus
Forelimb
Premovement neuronal activity
Research Articles
ComputingMilieux_MISCELLANEOUS
Electric stimulation
Physics
Brain Mapping
Multidisciplinary
medicine.diagnostic_test
Biomechanics
SciAdv r-articles
Brain
Magnetic Resonance Imaging
Hindlimb
neuroscience
neuronal activity
Imaging
[SDV.IB]Life Sciences [q-bio]/Bioengineering
[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]
Elastography
Preclinical imaging
Research Article
musculoskeletal diseases
animal structures
610 Medicine & health
macromolecular substances
Stimulus (physiology)
03 medical and health sciences
medicine
Animals
10237 Institute of Biomedical Engineering
3101 Physics and Astronomy (miscellaneous)
1000 Multidisciplinary
technology
industry
and agriculture

Magnetic resonance imaging
equipment and supplies
Electric Stimulation
Mice
Inbred C57BL

Acoustic Stimulation
nervous system
Neuroscience
030217 neurology & neurosurgery
Zdroj: Patz, S, Fovargue, D, Schregel, K, Nazari, N, Palotai, M, Barbone, P E, Fabry, B, Hammers, A, Holm, S, Kozerke, S, Nordsletten, D & Sinkus, R 2019, ' Imaging localized neuronal activity at fast time scales through biomechanics ', Science Advances, vol. 5, no. 4, eaav3816 . https://doi.org/10.1126/sciadv.aav3816
Science Advances
Science Advances, American Association for the Advancement of Science (AAAS), 2019, 5 (4), pp.eaav3816. ⟨10.1126/sciadv.aav3816⟩
Science Advances, 5 (4)
ISSN: 2375-2548
Popis: Mapping neuronal activity noninvasively is a key requirement for in vivo human neuroscience. Traditional functional magnetic resonance (MR) imaging, with a temporal response of seconds, cannot measure high-level cognitive processes evolving in tens of milliseconds. To advance neuroscience, imaging of fast neuronal processes is required. Here, we show in vivo imaging of fast neuronal processes at 100-ms time scales by quantifying brain biomechanics noninvasively with MR elastography. We show brain stiffness changes of ~10% in response to repetitive electric stimulation of a mouse hind paw over two orders of frequency from 0.1 to 10 Hz. We demonstrate in mice that regional patterns of stiffness modulation are synchronous with stimulus switching and evolve with frequency. For very fast stimuli (100 ms), mechanical changes are mainly located in the thalamus, the relay location for afferent cortical input. Our results demonstrate a new methodology for noninvasively tracking brain functional activity at high speed.
Science Advances, 5 (4)
ISSN:2375-2548
Databáze: OpenAIRE