Imaging localized neuronal activity at fast time scales through biomechanics
Autor: | Miklos Palotai, Katharina Schregel, Alexander Hammers, Sverre Holm, Sebastian Kozerke, Paul E. Barbone, Daniel Fovargue, Ralph Sinkus, Samuel Patz, Ben Fabry, Navid Nazari, David Nordsletten |
---|---|
Přispěvatelé: | Laboratoire de Recherche Vasculaire Translationnelle (LVTS (UMR_S_1148 / U1148)), Université Paris 13 (UP13)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de la Santé et de la Recherche Médicale (INSERM), University of Zurich, Patz, Samuel, Boston University [Boston] (BU), Biophysics Group Friedrich-Alexander University, Centre d'Etude et de Recherche Multimodal Et Pluridisciplinaire en imagerie du vivant (CERMEP - imagerie du vivant), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-CHU Grenoble-Hospices Civils de Lyon (HCL)-CHU Saint-Etienne-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institute for Biomedical Engineering [ETH Zürich] (IBT), Universität Zürich [Zürich] = University of Zurich (UZH)-Department of Information Technology and Electrical Engineering [Zürich] (D-ITET), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)- Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Imaging Sciences and Biomedical Engineering Division [London], Guy's and St Thomas' Hospital [London]-King‘s College London, Physique des ondes pour la médecine, Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging
[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology [SDV]Life Sciences [q-bio] 030218 nuclear medicine & medical imaging 170 Ethics Mice 0302 clinical medicine Thalamus Forelimb Premovement neuronal activity Research Articles ComputingMilieux_MISCELLANEOUS Electric stimulation Physics Brain Mapping Multidisciplinary medicine.diagnostic_test Biomechanics SciAdv r-articles Brain Magnetic Resonance Imaging Hindlimb neuroscience neuronal activity Imaging [SDV.IB]Life Sciences [q-bio]/Bioengineering [SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] Elastography Preclinical imaging Research Article musculoskeletal diseases animal structures 610 Medicine & health macromolecular substances Stimulus (physiology) 03 medical and health sciences medicine Animals 10237 Institute of Biomedical Engineering 3101 Physics and Astronomy (miscellaneous) 1000 Multidisciplinary technology industry and agriculture Magnetic resonance imaging equipment and supplies Electric Stimulation Mice Inbred C57BL Acoustic Stimulation nervous system Neuroscience 030217 neurology & neurosurgery |
Zdroj: | Patz, S, Fovargue, D, Schregel, K, Nazari, N, Palotai, M, Barbone, P E, Fabry, B, Hammers, A, Holm, S, Kozerke, S, Nordsletten, D & Sinkus, R 2019, ' Imaging localized neuronal activity at fast time scales through biomechanics ', Science Advances, vol. 5, no. 4, eaav3816 . https://doi.org/10.1126/sciadv.aav3816 Science Advances Science Advances, American Association for the Advancement of Science (AAAS), 2019, 5 (4), pp.eaav3816. ⟨10.1126/sciadv.aav3816⟩ Science Advances, 5 (4) |
ISSN: | 2375-2548 |
Popis: | Mapping neuronal activity noninvasively is a key requirement for in vivo human neuroscience. Traditional functional magnetic resonance (MR) imaging, with a temporal response of seconds, cannot measure high-level cognitive processes evolving in tens of milliseconds. To advance neuroscience, imaging of fast neuronal processes is required. Here, we show in vivo imaging of fast neuronal processes at 100-ms time scales by quantifying brain biomechanics noninvasively with MR elastography. We show brain stiffness changes of ~10% in response to repetitive electric stimulation of a mouse hind paw over two orders of frequency from 0.1 to 10 Hz. We demonstrate in mice that regional patterns of stiffness modulation are synchronous with stimulus switching and evolve with frequency. For very fast stimuli (100 ms), mechanical changes are mainly located in the thalamus, the relay location for afferent cortical input. Our results demonstrate a new methodology for noninvasively tracking brain functional activity at high speed. Science Advances, 5 (4) ISSN:2375-2548 |
Databáze: | OpenAIRE |
Externí odkaz: |