Pushed and pulled fronts in a discrete reaction–diffusion equation

Autor: Reuben D. O'Dea, John R. King
Rok vydání: 2015
Předmět:
Zdroj: Journal of Engineering Mathematics. 102:89-116
ISSN: 1573-2703
0022-0833
DOI: 10.1007/s10665-015-9829-3
Popis: We consider the propagation of wave fronts connecting unstable and stable uniform solutions to a discrete reaction-diffusion equation on a one-dimensional integer lattice. The dependence of the wavespeed on the coupling strength µ between lattice points and on a detuning parameter (α) appearing in a nonlinear forcing is investigated thoroughly. Via asymptotic and numerical studies, the speed both of 'pulled' fronts (whereby the wavespeed can be characterised by the linear behaviour at the leading edge of the wave) and of 'pushed' fronts (for which the nonlinear dynamics of the entire front determine the wavespeed) is investigated in detail. The asymptotic and numerical techniques employed complement each other in highlighting the transition between pushed and pulled fronts under variations of µ and α.
Databáze: OpenAIRE