Anti-diabetic effects of lactic acid bacteria in normal and type 2 diabetic mice
Autor: | Naoko Uchida, Mihoko Moto, Fang He, Naotaka Hashizume, Kayoko Honda |
---|---|
Rok vydání: | 2012 |
Předmět: |
Lactobacillus rhamnosus GG
medicine.medical_specialty lactic acid bacterium Sucrose antidiabetic effects Clinical Biochemistry Medicine (miscellaneous) glucose tolerance test Type 2 diabetes Impaired glucose tolerance KK-Ay mouse chemistry.chemical_compound Lactobacillus rhamnosus Internal medicine Lactobacillus medicine Glucose tolerance test Nutrition and Dietetics biology medicine.diagnostic_test business.industry food and beverages medicine.disease biology.organism_classification Lactic acid Endocrinology Postprandial chemistry Biochemistry Original Article business |
Zdroj: | Journal of Clinical Biochemistry and Nutrition |
ISSN: | 1880-5086 0912-0009 |
DOI: | 10.3164/jcbn.11-07 |
Popis: | The antidiabetic effects of lactic acid bacteria were investigated using mice. In Experiment 1, normal ICR mice were loaded with sucrose or starch with or without viable Lactobacillus rhamnosus GG cells. GG significantly inhibited postprandial blood glucose levels when administered with sucrose or starch. In Experiment 2, KK-A(y) mice, a model of genetic type 2 diabetes, were given a basal diet containing viable GG cells or viable Lactobacillus delbrueckii subsp. bulgaricus cells for 6 weeks. Viable GG cells significantly inhibited fasting blood glucose, postprandial blood glucose in a glucose tolerance test and HbA1c. Such effects were not shown by viable L. bulgaricus cells. In Experiment 3, the KK-A(y) mice were given a basal diet containing viable GG cells or heat-treated GG cells for 3 weeks. The viable GG cells significantly suppressed fasting blood glucose and impaired glucose tolerance, but the heat-treated GG showed no effects. These results demonstrated that GG decreased the postprandial blood glucose in ICR mice, and that the antidiabetic activity of lactic acid bacteria on the KK-A(y) mice differed depending on the bacterial strain and whether the bacterium is viable when it arrives in the intestine. In the present study, we conclude that the antidiabetic activity may result from continuous inhibition of the postprandial blood glucose through suppression of glucose absorption from the intestine. These findings indicate that specific strains of lactic acid bacterium can be expected to be beneficial for the management of type 2 diabetes. |
Databáze: | OpenAIRE |
Externí odkaz: |