COUNTING SIBLINGS IN UNIVERSAL THEORIES

Autor: SAMUEL BRAUNFELD, MICHAEL C. LASKOWSKI
Rok vydání: 2022
Předmět:
Zdroj: The Journal of Symbolic Logic. 87:1130-1155
ISSN: 1943-5886
0022-4812
DOI: 10.1017/jsl.2022.3
Popis: We show that if a countable structure $M$ in a finite relational language is not cellular, then there is an age-preserving $N \supseteq M$ such that $2^{\aleph_0}$ many structures are bi-embeddable with $N$. The proof proceeds by a case division based on mutual algebraicity.
Comment: 26 pages; v3 to appear in Journal of Symbolic Logic
Databáze: OpenAIRE