COUNTING SIBLINGS IN UNIVERSAL THEORIES
Autor: | SAMUEL BRAUNFELD, MICHAEL C. LASKOWSKI |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | The Journal of Symbolic Logic. 87:1130-1155 |
ISSN: | 1943-5886 0022-4812 |
DOI: | 10.1017/jsl.2022.3 |
Popis: | We show that if a countable structure $M$ in a finite relational language is not cellular, then there is an age-preserving $N \supseteq M$ such that $2^{\aleph_0}$ many structures are bi-embeddable with $N$. The proof proceeds by a case division based on mutual algebraicity. Comment: 26 pages; v3 to appear in Journal of Symbolic Logic |
Databáze: | OpenAIRE |
Externí odkaz: |