Inference on inspiral signals using LISA MLDC data

Autor: James S. Clark, Graham Woan, C. Messenger, Richard Umstätter, Alexander Stroeer, Christian Röver, Nelson Christensen, John Veitch, Renate Meyer, Matthew Pitkin, Ed Bloomer, Alberto Vecchio, Jennifer Toher, Martin Hendry
Rok vydání: 2007
Předmět:
Zdroj: Classical and quantum gravity
ISSN: 1361-6382
0264-9381
DOI: 10.1088/0264-9381/24/19/s15
Popis: In this paper we describe a Bayesian inference framework for analysis of data obtained by LISA. We set up a model for binary inspiral signals as defined for the Mock LISA Data Challenge 1.2 (MLDC), and implemented a Markov chain Monte Carlo (MCMC) algorithm to facilitate exploration and integration of the posterior distribution over the 9-dimensional parameter space. Here we present intermediate results showing how, using this method, information about the 9 parameters can be extracted from the data.
Accepted for publication in Classical and Quantum Gravity, GWDAW-11 special issue
Databáze: OpenAIRE