Receptive Fields for Generalized Map Pyramids: The Notion of Generalized Orbit
Autor: | Pascal Lienhardt, Carine Grasset-Simon, Guillaume Damiand |
---|---|
Přispěvatelé: | SIGNAL-IMAGE-COMMUNICATION (SIC), Université de Poitiers-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2005 |
Předmět: |
generalized map pyramids
Pure mathematics Dimension (graph theory) [INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS] Structure (category theory) Discrete geometry 0102 computer and information sciences 02 engineering and technology Topology 01 natural sciences Hierarchical database model Pyramid 0202 electrical engineering electronic engineering information engineering Irregular pyramids Mathematics Quantitative Biology::Neurons and Cognition generalized orbits Data structure generalized maps 010201 computation theory & mathematics Contour line Computer Science::Computer Vision and Pattern Recognition [INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] 020201 artificial intelligence & image processing Orbit (control theory) connecting walks |
Zdroj: | Lecture Notes in Computer Science Discrete Discrete Geometry for Computer Imagery Discrete Geometry for Computer Imagery, Apr 2005, Poitiers, France. pp.56-67, ⟨10.1007/978-3-540-31965-8_6⟩ Discrete Geometry for Computer Imagery ISBN: 9783540255130 DGCI Scopus-Elsevier |
DOI: | 10.1007/978-3-540-31965-8_6⟩ |
Popis: | International audience; A pyramid of n-dimensional generalized maps is a hierarchical data structure. It can be used, for instance, in order to represent an irregular pyramid of n-dimensional images. A pyramid of generalized maps can be built by successively removing and/or contracting cells of any dimension. In this paper, we define generalized orbits, which extend the classical notion of receptive fields. Generalized orbits allow to establish the correspondence between a cell of a pyramid level and the set of cells of previous levels, the removal or contraction of which have led to the creation of this cell. In order to define generalized orbits, we extend, for generalized map pyramids, the notion of connecting walk defined by Brun and Kropatsch. |
Databáze: | OpenAIRE |
Externí odkaz: |