Solution Formulas for Differential Sylvester and Lyapunov Equations

Autor: Jan Heiland, Maximilian Behr, Peter Benner
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: CALCOLO : A Quarterly on Numerical Analysis and Theory of Computation
Popis: The differential Sylvester equation and its symmetric version, the differential Lyapunov equation, appear in different fields of applied mathematics like control theory, system theory, and model order reduction. The few available straight-forward numerical approaches if applied to large-scale systems come with prohibitively large storage requirements. This shortage motivates us to summarize and explore existing solution formulas for these equations. We develop a unifying approach based on the spectral theorem for normal operators like the Sylvester operator $\mathcal S(X)=AX+XB$ and derive a formula for its norm using an induced operator norm based on the spectrum of $A$ and $B$. In view of numerical approximations, we propose an algorithm that identifies a suitable Krylov subspace using Taylor series and use a projection to approximate the solution. Numerical results for large-scale differential Lyapunov equations are presented in the last sections.
30 pages, 51 figures
Databáze: OpenAIRE