Phase transitions in 2d orders coupled to the Ising model

Autor: Lisa Glaser
Rok vydání: 2021
Předmět:
Zdroj: Classical and Quantum Gravity. 38:145017
ISSN: 1361-6382
0264-9381
DOI: 10.1088/1361-6382/abf1c5
Popis: The $2$d orders are a sub class of causal sets, which is especially amenable to computer simulations. Past work has shown that the $2$d orders have a first order phase transition between a random and a crystalline phase. When coupling the $2$d orders to the Ising model, this phase transition coincides with the transition of the Ising model. The coupled system also shows a new phase, at negative $\beta$, where the Ising model induces the geometric transition. In this article we examine the phase transitions of the coupled system, to determine their order, as well as how they scale when the system size is changed. We find that the transition at positive $\beta$ seems to be of mixed order, while the two transitions at negative $\beta$ appear continous/ first order for the Ising model/ the geometry respectively. The scaling of the observables with the system size on the other hand is fairly simple, and does, where applicable, agree with that found for the pure $2$d orders. We find that the location of these transitions has fractional scaling in the system size.
Comment: 34 pages, 22 figures, v2 matches journal version, to appear in CQG
Databáze: OpenAIRE