Quantitative experimental assessment of hot carrier-enhanced solar cells at room temperature
Autor: | Dac-Trung Nguyen, François Gibelli, Jean-François Guillemoles, Olivier Durand, Soline Boyer-Richard, Alain Le Corre, Laurent Lombez |
---|---|
Přispěvatelé: | Institut de Recherche et Développement sur l'Energie Photovoltaïque (IRDEP), EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC), Institut Photovoltaïque d’Ile-de-France (UMR) (IPVF), École polytechnique (X)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-TOTAL FINA ELF-EDF (EDF)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Photovoltaïque d’Ile-de-France (ITE) (IPVF)-Air Liquide [Siège Social], Institut des Fonctions Optiques pour les Technologies de l'informatiON (Institut FOTON), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-École Nationale Supérieure des Sciences Appliquées et de Technologie (ENSSAT)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École Nationale Supérieure des Sciences Appliquées et de Technologie (ENSSAT)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Materials science
Population Energy Engineering and Power Technology 02 engineering and technology 01 natural sciences 7. Clean energy law.invention Condensed Matter::Materials Science law Photovoltaics 0103 physical sciences Solar cell [PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] Absorption (electromagnetic radiation) education 010302 applied physics [PHYS]Physics [physics] education.field_of_study Renewable Energy Sustainability and the Environment business.industry Photovoltaic system Heterojunction 021001 nanoscience & nanotechnology Electronic Optical and Magnetic Materials Fuel Technology Semiconductor Thermophotovoltaic [PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] Optoelectronics 0210 nano-technology business |
Zdroj: | Nature Energy Nature Energy, Nature Publishing Group, 2018, 3, pp.236-242. ⟨10.1038/s41560-018-0106-3⟩ Nature Energy, 2018, 3, pp.236-242. ⟨10.1038/s41560-018-0106-3⟩ |
ISSN: | 2058-7546 |
DOI: | 10.1038/s41560-018-0106-3⟩ |
Popis: | International audience; In common photovoltaic devices, the part of the incident energy above the absorption threshold quickly ends up as heat, whichlimits their maximum achievable efficiency to far below the thermodynamic limit for solar energy conversion. Conversely, the conversion of the excess kinetic energy of the photogenerated carriers into additional free energy would be sufficient to approach the thermodynamic limit. This is the principle of hot carrier devices. Unfortunately, such device operation in conditions relevant for utilization has never been evidenced. Here, we show that the quantitative thermodynamic study of the hot carrier population, with luminance measurements, allows us to discuss the hot carrier contribution to the solar cell performance. We demonstrate that the voltage and current can be enhanced in a semiconductor heterostructure due to the presence of the hot carrier population in a single InGaAsP quantum well at room temperature. These experimental results substantiate the potential of increasing photovoltaic performances in the hot carrier regime. |
Databáze: | OpenAIRE |
Externí odkaz: |