In silico analyses and design of a chimeric protein containing epitopes of SpaC, PknG, NanH, and SodC proteins for the control of caseous lymphadenitis

Autor: Rodrigo Barros de Pinho, Rafael Danelon dos Santos Woloski, Mirna Samara Dié Alves, Nicole Ramos Scholl, Mara Thais de Oliveira Silva, Francisco Silvestre Brilhante Bezerra, Sibele Borsuk, Luiza Domingues Moron, Frederico Schmitt Kremer
Rok vydání: 2021
Předmět:
Zdroj: Applied Microbiology and Biotechnology
ISSN: 1432-0614
0175-7598
Popis: Caseous lymphadenitis (CLA) is an infectious disease that affects goats and sheep causing drastic impacts on milk and meat production and is caused by Corynebacterium pseudotuberculosis. The disease can be prevented through vaccination but currently, vaccines demonstrate limited efficacy consequently leading to a need for the development of new ones. Here, we described the in silico development of a new chimeric protein constructed with epitopes identified from the sequences of the genes nanH, pknG, spaC, and sodC, previously described as potential vaccinal targets against C. pseudotuberculosis. The chimera was expressed, purified, and its immunogenicity was evaluated using sera of immunized mice. Results indicate the chimeric protein was able to stimulate antibody production. Additionally, analysis using serum from naturally infected goats showed that the protein is recognized by sera from these animals, indicating the possibility for using this chimera in new diagnostic methods. Key points • The chimera was expressed with 52 kDa and a yield of 7 mg/L after purification. • The chimera was recognized by the sera of animals immunized with this formulation. • Chimera reacted with the serum of goats naturally infected with C. pseudotuberculosis. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11619-x.
Databáze: OpenAIRE