An advanced elastoplastic framework accounting for induced plastic anisotropy fully coupled with ductile damage

Autor: Farid Abed-Meraim, Khemais Saanouni, Carl Labergere, Mohamed Ben Bettaieb, Houssem Badreddine, Joseph Paux
Přispěvatelé: Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM), Institut de recherche technologique Matériaux Métallurgie et Procédés (IRT M2P), Institut de Thermique, Mécanique, Matériaux (ITheMM), Université de Reims Champagne-Ardenne (URCA), Laboratoire des Systèmes Mécaniques et d'Ingénierie Simultanée (LASMIS), Université de Technologie de Troyes (UTT), French program Plan d'Investissement d'Avenir (PIA)Agence Nationale de la Recherche (ANR), HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Materials science
Yield (engineering)
Matériaux [Sciences de l'ingénieur]
Plasticity
Accounting
Induced plastic anisotropy
02 engineering and technology
Modélisation et simulation [Informatique]
Sciences de l'ingénieur
[SPI.MAT]Engineering Sciences [physics]/Materials
[PHYS.MECA.MEMA]Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph]
[SPI]Engineering Sciences [physics]
0203 mechanical engineering
Full coupling
General Materials Science
Texture (crystalline)
[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics
Anisotropy
Civil and Structural Engineering
Multiscale schemes
Phenomenological models
business.industry
Mécanique [Sciences de l'ingénieur]
Micro et nanotechnologies/Microélectronique [Sciences de l'ingénieur]
Mechanical Engineering
Isotropy
Scalar (physics)
[SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph]
021001 nanoscience & nanotechnology
Condensed Matter Physics
[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation
Finite element method
020303 mechanical engineering & transports
Damage
Mechanics of Materials
Hardening (metallurgy)
0210 nano-technology
business
Zdroj: International Journal of Mechanical Sciences
International Journal of Mechanical Sciences, Elsevier, 2021, 207, pp.106620. ⟨10.1016/j.ijmecsci.2021.106620⟩
International Journal of Mechanical Sciences, 2021, 207, pp.106620. ⟨10.1016/j.ijmecsci.2021.106620⟩
ISSN: 0020-7403
DOI: 10.1016/j.ijmecsci.2021.106620⟩
Popis: We present in this investigation an advanced phenomenological approach combining the computational efficiency of classical phenomenological plasticity models and the accuracy and high resolution of multiscale crystal plasticity schemes. Within this advanced approach, a new phenomenological constitutive framework has been developed and implemented into ABAQUS/Standard finite element (FE) code. Compared to classical approaches, this framework allows accounting for initial and induced plastic anisotropy, isotropic nonlinear hardening and the full coupling with isotropic ductile damage. Material parameters corresponding to this phenomenological constitutive framework are identified based on multiscale polycrystalline simulations, where the self-consistent scheme is used to ensure the transition between the single crystal and polycrystal scales. The single crystal mechanical behavior is assumed to be elastoplastic (rate-independent), and microscopic material degradation is well-considered by introducing a scalar damage variable at each crystallographic slip system for each individual grain. The evolution of polycrystalline yield surfaces, induced by the evolution of crystallographic texture, is accurately reproduced by the new constitutive modeling, where the anisotropy parameters are assumed to evolve during plastic deformation. Their evolution laws are identified based on multiscale simulations. The different identification procedures are presented and extensively discussed. The robustness and reliability of this advanced model are analyzed through some relevant numerical predictions obtained by applying a combined tensile/shear test. French program Plan d'Investissement d'Avenir (PIA) Agence Nationale de la Recherche (ANR)
Databáze: OpenAIRE