On the maximum number of period annuli for second order conservative equations

Autor: Inara Yermachenko, Armands Gritsans
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Mathematical Modelling and Analysis, Vol 26, Iss 4, Pp 612-630 (2021)
Mathematical Modelling and Analysis; Vol 26 No 4 (2021); 612-630
ISSN: 1648-3510
1392-6292
Popis: We consider a second order scalar conservative differential equation whose potential function is a Morse function with a finite number of critical points and is unbounded at infinity. We give an upper bound for the number of nonglobal nontrivial period annuli of the equation and prove that the upper bound obtained is sharp. We use tree theory in our considerations.
Databáze: OpenAIRE