Practical central binomial coefficients

Autor: Carlo Sanna
Rok vydání: 2020
Předmět:
Zdroj: Quaestiones Mathematicae; Vol. 44 No. 9 (2021); 1141-1144
ISSN: 1727-933X
1607-3606
DOI: 10.2989/16073606.2020.1775156
Popis: A practical number is a positive integer $n$ such that all positive integers less than $n$ can be written as a sum of distinct divisors of $n$. Leonetti and Sanna proved that, as $x \to +\infty$, the central binomial coefficient $\binom{2n}{n}$ is a practical number for all positive integers $n \leq x$ but at most $O(x^{0.88097})$ exceptions. We improve this result by reducing the number of exceptions to $\exp\!\big(C (\log x)^{4/5} \log \log x\big)$, where $C > 0$ is a constant.
Databáze: OpenAIRE