Development of a drilling simulator for dental implant surgery

Autor: Naoki Takano, Masahiro Nagahata, Shinji Takemoto, Hideaki Kinoshita, Eiji Kawada, Satoru Matsunaga, Masao Yoshinari, Shinichi Abe
Předmět:
020205 medical informatics
Computer science
medicine.medical_treatment
Finite Element Analysis
education
Sensation
Dentistry
Mandible
02 engineering and technology
Osteotomy
Prosthodontics
Vibration
Dental implant surgery
03 medical and health sciences
Imaging
Three-Dimensional

0302 clinical medicine
stomatognathic system
Image Processing
Computer-Assisted

0202 electrical engineering
electronic engineering
information engineering

medicine
Humans
Education
Dental

Simulation Training
Simulation
Dental Implants
Orthodontics
Drill
business.industry
Dental Implantation
Endosseous

Dental prosthesis
Educational Technology
Drilling
Equipment Design
X-Ray Microtomography
030206 dentistry
General Medicine
Biomechanical Phenomena
stomatognathic diseases
medicine.anatomical_structure
Cortical bone
Stress
Mechanical

business
Zdroj: Scopus-Elsevier
Popis: The aim of this study was to develop and evaluate a dental implant surgery simulator that allows learners to experience the drilling forces necessary to perform an osteotomy in the posterior mandibular bone. The simulator contains a force-sensing device that receives input and counteracts this force, which is felt as resistance by the user. The device consists of an actuator, a load cell, and a control unit. A mandibular bone model was fabricated in which the predicted forces necessary to drill the cortical and trabecular bone were determined via micro CT image-based 3D finite element analysis. The simulator was evaluated by five dentists from the Department of Implantology at Tokyo Dental College. The ability of the evaluators to distinguish the drilling resistance through different regions of the mandibular bone was investigated. Of the five dentists, four sensed the change in resistance when the drill perforated the upper cortical bone. All five dentists were able to detect when the drill made contact with lingual cortical bone and when the lingual bone was perforated. This project successfully developed a dental implant surgery simulator that allows users to experience the forces necessary to drill through types of bone encountered during osteotomy. Furthermore, the researchers were able to build a device by which excessive drilling simulates a situation in which the lingual cortical bone is perforated--a situation that could lead to negative repercussions in a clinical setting. The simulator was found to be useful to train users to recognize the differences in resistance when drilling through the mandibular bone.
Databáze: OpenAIRE