Development of a drilling simulator for dental implant surgery
Autor: | Naoki Takano, Masahiro Nagahata, Shinji Takemoto, Hideaki Kinoshita, Eiji Kawada, Satoru Matsunaga, Masao Yoshinari, Shinichi Abe |
---|---|
Předmět: |
020205 medical informatics
Computer science medicine.medical_treatment Finite Element Analysis education Sensation Dentistry Mandible 02 engineering and technology Osteotomy Prosthodontics Vibration Dental implant surgery 03 medical and health sciences Imaging Three-Dimensional 0302 clinical medicine stomatognathic system Image Processing Computer-Assisted 0202 electrical engineering electronic engineering information engineering medicine Humans Education Dental Simulation Training Simulation Dental Implants Orthodontics Drill business.industry Dental Implantation Endosseous Dental prosthesis Educational Technology Drilling Equipment Design X-Ray Microtomography 030206 dentistry General Medicine Biomechanical Phenomena stomatognathic diseases medicine.anatomical_structure Cortical bone Stress Mechanical business |
Zdroj: | Scopus-Elsevier |
Popis: | The aim of this study was to develop and evaluate a dental implant surgery simulator that allows learners to experience the drilling forces necessary to perform an osteotomy in the posterior mandibular bone. The simulator contains a force-sensing device that receives input and counteracts this force, which is felt as resistance by the user. The device consists of an actuator, a load cell, and a control unit. A mandibular bone model was fabricated in which the predicted forces necessary to drill the cortical and trabecular bone were determined via micro CT image-based 3D finite element analysis. The simulator was evaluated by five dentists from the Department of Implantology at Tokyo Dental College. The ability of the evaluators to distinguish the drilling resistance through different regions of the mandibular bone was investigated. Of the five dentists, four sensed the change in resistance when the drill perforated the upper cortical bone. All five dentists were able to detect when the drill made contact with lingual cortical bone and when the lingual bone was perforated. This project successfully developed a dental implant surgery simulator that allows users to experience the forces necessary to drill through types of bone encountered during osteotomy. Furthermore, the researchers were able to build a device by which excessive drilling simulates a situation in which the lingual cortical bone is perforated--a situation that could lead to negative repercussions in a clinical setting. The simulator was found to be useful to train users to recognize the differences in resistance when drilling through the mandibular bone. |
Databáze: | OpenAIRE |
Externí odkaz: |