Bayesian Optimization of a Laser-Plasma Accelerator

Autor: Jalas, Sören, Kirchen, Manuel, Messner, Philipp, Winkler, Paul, Hübner, Lars, Dirkwinkel, Julian, Schnepp, Matthias, Lehe, Remi, Maier, Andreas
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Physical review letters 126(10), 104801 (2021). doi:10.1103/PhysRevLett.126.104801
DOI: 10.3204/pubdb-2021-00902
Popis: Physical review letters 126(10), 104801 (2021). doi:10.1103/PhysRevLett.126.104801
Generating high-quality laser-plasma accelerated electron beams requires carefully balancing a plethora of physical effects and is therefore challenging—both conceptually and in experiments. Here, we use Bayesian optimization of key laser and plasma parameters to flatten the longitudinal phase space of an ionization-injected electron bunch via optimal beam loading. We first study the concept with particle-in-cell simulations and then demonstrate it in experiments. Starting from an arbitrary set point, the plasma accelerator autonomously tunes the beam energy spread to the subpercent level at 254 MeV and 4.7 pC/MeV spectral density. Finally, we study a robust regime, which improves the stability of the laser-plasma accelerator and delivers sub-five-percent rms energy spread beams for 90% of all shots.
Published by APS, College Park, Md.
Databáze: OpenAIRE