2-Phenylbenzoxazole derivatives: a family of robust emitters of solid-state fluorescence

Autor: Suzanne Fery-Forgues, Chantal Carayon
Přispěvatelé: Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), Institut de Chimie de Toulouse (ICT-FR 2599), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Photochemical & Photobiological Sciences
Photochemical & Photobiological Sciences, Royal Society of Chemistry, 2017, 16 (7), pp.1020-1035. ⟨10.1039/C7PP00112F⟩
ISSN: 1474-905X
1474-9092
DOI: 10.1039/C7PP00112F⟩
Popis: The derivatives of 2-phenylbenzoxazole (PBO) are popular fluorescent organic dyes for use in solution or after dispersion in an appropriate matrix. Their spectroscopic behavior in the solid state is, unjustly, not so well known. Many of them are strongly emissive as pure solid dyes, due to a favorable crystal packing mode. The PBO fragment lends itself well to relatively simple modifications of its chemical structure, aimed at enlarging the conjugated π-electron system. Many molecules thus designed show aggregation-induced emission (AIE). Furthermore, the derivatives of 2-(2'-hydroxyphenyl)benzoxazole (HBO) are familiar excited-state intramolecular proton transfer (ESIPT) dyes. They are particularly well suited for solid-state sensing. Mechanofluorochromism is also observed in complexes and closely-related compounds. Regarding their self-association properties, the general tendency of many PBO derivatives is to give elongated nano and microparticles. Very small chemical changes are enough to tune the shape and size of these particles. Nanofibers may be obtained by simple preparation methods and are of great value for wave-guiding. For all these reasons, as well as for its robustness and high photo- and thermal stability, the PBO fragment is an attractive building block to access new molecules that will be particularly well adapted for developments in the field of photoluminescent materials.
Databáze: OpenAIRE