Ti and its alloys as examples of cryogenic focused ion beam milling of environmentally-sensitive materials
Autor: | Paraskevas Kontis, Isabelle Mouton, Christian Liebscher, Abigail K. Ackerman, Dierk Raabe, Dirk Ponge, Wenjun Lu, Leigh T. Stephenson, Julien Guénolé, Sandra Korte-Kerzel, Agnieszka Szczpaniak, Siyuan Zhang, Baptiste Gault, Xiankang Zhong, David Dye, Yanhong Chang, Felicity F. Dear |
---|---|
Přispěvatelé: | Engineering & Physical Science Research Council (EPSRC), Microstructure Physics and Alloy Design [MPIE Düsseldorf], Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Gesellschaft-Max-Planck-Gesellschaft, Institute of Physical Metallurgy and Metal Physics [RWTH Aachen University], Max-Planck-Gesellschaft, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Department of Materials Science and Metallurgy [Cambridge University] (DMSM), University of Cambridge [UK] (CAM) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
0301 basic medicine
Materials science Hydrogen Science IRRADIATION-INDUCED DAMAGE General Physics and Astronomy chemistry.chemical_element 02 engineering and technology Atom probe Focused ion beam General Biochemistry Genetics and Molecular Biology HYDRIDES Article law.invention [SPI.MAT]Engineering Sciences [physics]/Materials 03 medical and health sciences law lcsh:Science DISPLACEMENT Multidisciplinary Science & Technology Hydride technology industry and agriculture Titanium alloy SITE MICROSCOPY General Chemistry 021001 nanoscience & nanotechnology equipment and supplies SPECIMEN PREPARATION Multidisciplinary Sciences 030104 developmental biology HYDROGEN EMBRITTLEMENT chemistry Chemical engineering MAGNESIUM TITANIUM SIMULATION Science & Technology - Other Topics lcsh:Q ddc:500 Selected area diffraction 0210 nano-technology Titanium Hydrogen embrittlement |
Zdroj: | Nature Communications Nature Communications, Nature Publishing Group, 2019, 10 (1), ⟨10.1038/s41467-019-08752-7⟩ Nature Communications, Vol 10, Iss 1, Pp 1-10 (2019) Nature Communications, 2019, 10 (1), ⟨10.1038/s41467-019-08752-7⟩ Nature Communications 10, 942 (2019). doi:10.1038/s41467-019-08752-7 |
ISSN: | 2041-1723 |
Popis: | Hydrogen pick-up leading to hydride formation is often observed in commercially pure Ti (CP-Ti) and Ti-based alloys prepared for microscopic observation by conventional methods, such as electro-polishing and room temperature focused ion beam (FIB) milling. Here, we demonstrate that cryogenic FIB milling can effectively prevent undesired hydrogen pick-up. Specimens of CP-Ti and a Ti dual-phase alloy (Ti-6Al-2Sn-4Zr-6Mo, Ti6246, in wt.%) were prepared using a xenon-plasma FIB microscope equipped with a cryogenic stage reaching −135 °C. Transmission electron microscopy (TEM), selected area electron diffraction, and scanning TEM indicated no hydride formation in cryo-milled CP-Ti lamellae. Atom probe tomography further demonstrated that cryo-FIB significantly reduces hydrogen levels within the Ti6246 matrix compared with conventional methods. Supported by molecular dynamics simulations, we show that significantly lowering the thermal activation for H diffusion inhibits undesired environmental hydrogen pick-up during preparation and prevents pre-charged hydrogen from diffusing out of the sample, allowing for hydrogen embrittlement mechanisms of Ti-based alloys to be investigated at the nanoscale. Hydrogen contamination in metals during sample preparation for high-resolution microscopy remains a challenge, especially when hydrogen itself is being investigated. Here, the authors show that using cryogenic milling significantly reduces hydrogen pick-up during sample preparation of titanium and titanium alloys. |
Databáze: | OpenAIRE |
Externí odkaz: |