Ti and its alloys as examples of cryogenic focused ion beam milling of environmentally-sensitive materials

Autor: Paraskevas Kontis, Isabelle Mouton, Christian Liebscher, Abigail K. Ackerman, Dierk Raabe, Dirk Ponge, Wenjun Lu, Leigh T. Stephenson, Julien Guénolé, Sandra Korte-Kerzel, Agnieszka Szczpaniak, Siyuan Zhang, Baptiste Gault, Xiankang Zhong, David Dye, Yanhong Chang, Felicity F. Dear
Přispěvatelé: Engineering & Physical Science Research Council (EPSRC), Microstructure Physics and Alloy Design [MPIE Düsseldorf], Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Gesellschaft-Max-Planck-Gesellschaft, Institute of Physical Metallurgy and Metal Physics [RWTH Aachen University], Max-Planck-Gesellschaft, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Department of Materials Science and Metallurgy [Cambridge University] (DMSM), University of Cambridge [UK] (CAM)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
0301 basic medicine
Materials science
Hydrogen
Science
IRRADIATION-INDUCED DAMAGE
General Physics and Astronomy
chemistry.chemical_element
02 engineering and technology
Atom probe
Focused ion beam
General Biochemistry
Genetics and Molecular Biology

HYDRIDES
Article
law.invention
[SPI.MAT]Engineering Sciences [physics]/Materials
03 medical and health sciences
law
lcsh:Science
DISPLACEMENT
Multidisciplinary
Science & Technology
Hydride
technology
industry
and agriculture

Titanium alloy
SITE
MICROSCOPY
General Chemistry
021001 nanoscience & nanotechnology
equipment and supplies
SPECIMEN PREPARATION
Multidisciplinary Sciences
030104 developmental biology
HYDROGEN EMBRITTLEMENT
chemistry
Chemical engineering
MAGNESIUM
TITANIUM
SIMULATION
Science & Technology - Other Topics
lcsh:Q
ddc:500
Selected area diffraction
0210 nano-technology
Titanium
Hydrogen embrittlement
Zdroj: Nature Communications
Nature Communications, Nature Publishing Group, 2019, 10 (1), ⟨10.1038/s41467-019-08752-7⟩
Nature Communications, Vol 10, Iss 1, Pp 1-10 (2019)
Nature Communications, 2019, 10 (1), ⟨10.1038/s41467-019-08752-7⟩
Nature Communications 10, 942 (2019). doi:10.1038/s41467-019-08752-7
ISSN: 2041-1723
Popis: Hydrogen pick-up leading to hydride formation is often observed in commercially pure Ti (CP-Ti) and Ti-based alloys prepared for microscopic observation by conventional methods, such as electro-polishing and room temperature focused ion beam (FIB) milling. Here, we demonstrate that cryogenic FIB milling can effectively prevent undesired hydrogen pick-up. Specimens of CP-Ti and a Ti dual-phase alloy (Ti-6Al-2Sn-4Zr-6Mo, Ti6246, in wt.%) were prepared using a xenon-plasma FIB microscope equipped with a cryogenic stage reaching −135 °C. Transmission electron microscopy (TEM), selected area electron diffraction, and scanning TEM indicated no hydride formation in cryo-milled CP-Ti lamellae. Atom probe tomography further demonstrated that cryo-FIB significantly reduces hydrogen levels within the Ti6246 matrix compared with conventional methods. Supported by molecular dynamics simulations, we show that significantly lowering the thermal activation for H diffusion inhibits undesired environmental hydrogen pick-up during preparation and prevents pre-charged hydrogen from diffusing out of the sample, allowing for hydrogen embrittlement mechanisms of Ti-based alloys to be investigated at the nanoscale.
Hydrogen contamination in metals during sample preparation for high-resolution microscopy remains a challenge, especially when hydrogen itself is being investigated. Here, the authors show that using cryogenic milling significantly reduces hydrogen pick-up during sample preparation of titanium and titanium alloys.
Databáze: OpenAIRE