Grafted Nanoparticle Surface Wetting during Phase Separation in Polymer Nanocomposite Films
Autor: | Cherie R. Kagan, John D. Demaree, Connor Bilchak, Patrice Rannou, Christopher B. Murray, Michael J. Boyle, Nadia M. Krook, Kohji Ohno, Shawn Maguire, Austin W Keller, Russell J. Composto |
---|---|
Přispěvatelé: | School of Engineering and Applied Science [University of Pennsylvania], University of Pennsylvania [Philadelphia], U.S. Army Research Laboratory [Adelphi, MD] (ARL), United States Army (U.S. Army), DuPont Company, Institute for Chemical Research, Kyoto University (KUICR), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Synthèse, Structure et Propriétés de Matériaux Fonctionnels (STEP ), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), University of Pennsylvania |
Rok vydání: | 2021 |
Předmět: |
Materials science
Polymer nanocomposite surface segregation Nanoparticle 02 engineering and technology 010402 general chemistry 01 natural sciences Lower critical solution temperature polymer nanocomposites [CHIM]Chemical Sciences General Materials Science Dewetting [PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] [SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics polymer surfaces ComputingMilieux_MISCELLANEOUS [PHYS]Physics [physics] wetting diffusion [CHIM.MATE]Chemical Sciences/Material chemistry 021001 nanoscience & nanotechnology Rutherford backscattering spectrometry Surface energy 0104 chemical sciences [CHIM.POLY]Chemical Sciences/Polymers Chemical engineering Polymer blend Wetting grafted nanoparticles 0210 nano-technology |
Zdroj: | ACS Applied Materials & Interfaces ACS Applied Materials & Interfaces, Washington, D.C. : American Chemical Society, 2021, 13 (31), pp.37628-37637. ⟨10.1021/acsami.1c09233⟩ ACS Applied Materials & Interfaces, 2021, 13 (31), pp.37628-37637. ⟨10.1021/acsami.1c09233⟩ |
ISSN: | 1944-8252 1944-8244 |
DOI: | 10.1021/acsami.1c09233 |
Popis: | International audience; Wetting of polymer-grafted nanoparticles (NPs) in a polymer nanocomposite (PNC) film is driven by a difference in surface energy between components as well as bulk thermodynamics, namely, the value of the interaction parameter, χ. The interplay between these contributions is investigated in a PNC containing 25 wt % polymethyl methacrylate (PMMA)-grafted silica NPs (PMMA-NPs) in poly(styrene-ran-acrylonitrile) (SAN) upon annealing above the lower critical solution temperature (LCST, 160 °C). Atomic force microscopy (AFM) studies show that the areal density of particles increases rapidly and then approaches 80% of that expected for random close-packed hard spheres. A slightly greater areal density is observed at 190 °C compared to 170 °C. The PMMA-NPs are also shown to prevent dewetting of PNC films under conditions where the analogous polymer blend is unstable. Transmission electron microscopy (TEM) imaging shows that PMMANPs symmetrically wet both interfaces and form columns that span the free surface and substrate interface. Using grazingincidence Rutherford backscattering spectrometry (GI-RBS), the PMMA-NP surface excess (Z*) initially increases rapidly with time and then approaches a constant value at longer times. Consistent with the areal density, Z* is slightly greater at deeper quench depths, which is attributed to the more unfavorable interactions between the PMMA brush and SAN segments. The Z* values at early times are used to determine the PMMA-NP diffusion coefficients, which are significantly larger than theoretical predictions. These studies provide insights into the interplay between wetting and phase separation in PNCs and can be utilized in nanotechnology applications where surface-dependent properties, such as wettability, durability, and friction, are important. |
Databáze: | OpenAIRE |
Externí odkaz: |