Asymptotic behaviour of an age and infection age structured model for the propagation of fungal diseases in plants

Autor: Arnaud Ducrot, Jean-Baptiste Burie, Abdoul Aziz Mbengue
Přispěvatelé: Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Discrete and Continuous Dynamical Systems-Series B
Discrete and Continuous Dynamical Systems-Series B, American Institute of Mathematical Sciences, 2017, 22 (7), pp.2879-2905. ⟨10.3934/dcdsb.2017155⟩
ISSN: 1531-3492
1553-524X
DOI: 10.3934/dcdsb.2017155⟩
Popis: A mathematical model describing the propagation of fungal diseases in plants is proposed. The model takes into account both chronological age and age since infection. We investigate and fully characterize the large time behaviour of the solutions. Existence of a unique endemic stationary state is ensured by a threshold condition: \begin{document}$\mathcal R_0>1$\end{document} . Then using Lyapounov arguments, we prove that if \begin{document}$\mathcal R_0 ≤ 1$\end{document} the disease free stationary state is globally stable while when \begin{document}$\mathcal R_0>1$\end{document} , the unique endemic stationary state is globally stable with respect to a suitable set of initial data.
Databáze: OpenAIRE