Changes in brain activation caused by caloric stimulation in the case of cochleovestibular denervation - PET study

Autor: Beáta Kálvin, László Mikó, Miklós Emri, Zsolt Lengyel, Lajos Trón, István Sziklai, Mihály Kisely, Géza Horváth, Ágnes Tóth
Rok vydání: 2002
Předmět:
Zdroj: Nuclear Medicine Communications. 23:967-973
ISSN: 0143-3636
DOI: 10.1097/00006231-200210000-00006
Popis: There are a number of well-known stimulation methods for the investigation of the central projection of the vestibular system. In addition to optokinetic, galvanic and neck vibration tests, the most widespread method is caloric stimulation. These listed methods cause not only vestibular, but also other effects on the central nervous system (CNS) (acoustic, tactile and nociceptive). In this paper, positron emission tomography (PET) was used to investigate whether caloric stimulation contains a non-vestibular (extravestibular) component, which would cause a distortion in the cortical activity and therefore in the vestibular effect on the CNS. Caloric stimulation was carried out in six patients who had been operated on due to cerebello-pontine angle tumour. These patients suffered post-operatively from a complete lesion of the vestibular system and anacusis on the operated side. Ipsilaterally activated areas were the inferior pole of the post-central gyrus and temporoparietal junction, caudal part of the post-central gyrus (SI, SII), inferior parietal lobule and medial frontal gyrus. Contralaterally activated areas were the anterior cingulate gyrus, medial frontal gyrus, posterior part of the insula, post-central gyrus and temporoparietal junction (SII). Ipsilaterally deactivated areas were the caudal and cranial part of the medial occipital gyrus (V2, V3, V4, V5). Contralaterally deactivated areas were the lingual gyrus, inferior occipital gyrus (V2, V3) and fusiform gyrus. On the basis of these data, it was postulated that, during caloric stimulation, extravestibular reaction also occurs, which corresponds to the subjective feeling of heat and pain. The deactivation of the occipital cortex due to an extravestibular effect was demonstrated. This is the first observation to suggest the possibility of nociceptivevisual interaction.
Databáze: OpenAIRE