Towards Lax Formulation of Integrable Hierarchies of Topological Type

Autor: van de Leur, Johannes, Carlet, Guido, Shadrin, Sergey, Posthuma, Hessel, Sub Fundamental Mathematics, Sub Algebra,Geometry&Mathem. Logic begr., Fundamental mathematics
Přispěvatelé: Algebra, Geometry & Mathematical Physics (KDV, FNWI), Sub Fundamental Mathematics, Sub Algebra,Geometry&Mathem. Logic begr., Fundamental mathematics
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Zdroj: Communications in Mathematical Physics, 326(3), 815-849. Springer New York
Communications in Mathematical Physics, 326, 815. Springer New York
ISSN: 0010-3616
DOI: 10.1007/s00220-014-1898-z
Popis: To each partition function of cohomological field theory one can associate an Hamiltonian integrable hierarchy of topological type. The Givental group acts on such partition functions and consequently on the associated integrable hierarchies. We consider the Hirota and Lax formulations of the deformation of the hierarchy of N copies of KdV obtained by an infinitesimal action of the Givental group. By first deforming the Hirota quadratic equations and then applying a fundamental lemma to express it in terms of pseudo-differential operators, we show that such deformed hierarchy admits an explicit Lax formulation. We then compare the deformed Hamiltonians obtained from the Lax equations with the analogous formulas obtained in [1, 2], to find that they agree. We finally comment on the possibility of extending the Hirota and Lax formulation on the whole orbit of the Givental group action.
Comment: 36 pages
Databáze: OpenAIRE