Effect of Magnetic Field on Energy Spectrum and localizationof electron in multilayeredspherical nanosystems
Autor: | V.A. Holovatsky, M. Yahnevych, I. Bernik |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Physics
Condensed matter physics Field (physics) Electron Condensed Matter Physics Magnetic quantum number Condensed Matter::Mesoscopic Systems and Quantum Hall Effect lcsh:QC1-999 Schrödinger equation Magnetic field symbols.namesake symbols Rectangular potential barrier General Materials Science Physical and Theoretical Chemistry Wave function Quantum tunnelling lcsh:Physics |
Zdroj: | Фізика і хімія твердого тіла, Vol 17, Iss 2, Pp 180-187 (2017) |
ISSN: | 2309-8589 1729-4428 |
Popis: | The effect of magnetic field on electron energy spectrum, wave functions and probability densities in multilayered spherical quantum-dot-quantum-well (QDQW) CdSe/ZnS/CdSe/ZnS is studied in order to clear the question if the quasi-particle can tunnel through potential barrier under the influence of the external field. Computations are performed in the framework of the effective mass approximation and rectangular potential barriers model. It is used the method of the wave functions expansion over the complete basis of functions obtained as an exact solutions of the Schrodinger equation for the electron in QDQW without the magnetic field. It is shown that magnetic field takes off the spectrum degeneration with respect to the magnetic quantum number and deforms electron wave functions. The field stronger effects on the spherically-symmetric states, especially if the electron is localized in outer potential well. It is theoretically confirmed that under the influence of magnetic field the quasi-particle can essentially change its location tunneling through nanoscale potential barrier. That phenomenon would appear in optical properties of nanostructure. |
Databáze: | OpenAIRE |
Externí odkaz: |