Extracting Informative Rules From High Dimensionnal Data Using a Numerical Approach

Autor: Shadi Al Shehabi, Jean-Charles Lamirel, N. Carrez
Přispěvatelé: Neuromimetic intelligence (CORTEX), INRIA Lorraine, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2006
Předmět:
Clustering high-dimensional data
Computer science
Generalization
Information access
02 engineering and technology
[INFO.INFO-NE]Computer Science [cs]/Neural and Evolutionary Computing [cs.NE]
050905 science studies
computer.software_genre
Machine learning
[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
Knowledge extraction
[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG]
020204 information systems
0202 electrical engineering
electronic engineering
information engineering

Cluster analysis
[INFO.INFO-DB]Computer Science [cs]/Databases [cs.DB]
Artificial neural network
business.industry
05 social sciences
[INFO.INFO-NA]Computer Science [cs]/Numerical Analysis [cs.NA]
[INFO.INFO-TT]Computer Science [cs]/Document and Text Processing
Data mining
Artificial intelligence
0509 other social sciences
business
computer
Scope (computer science)
Zdroj: Sixth IEEE International Conference on Data Mining Workshops, 2006. ICDM Workshops 2006.
Sixth IEEE International Conference on Data Mining Workshops, 2006. ICDM Workshops 2006
Sixth IEEE International Conference on Data Mining Workshops, 2006. ICDM Workshops 2006, Dec 2006, Hong-Kong, Hong Kong SAR China. pp.453-457, ⟨10.1109/ICDMW.2006.77⟩
ICDM Workshops
DOI: 10.1109/ICDMW.2006.77⟩
Popis: International audience; This paper presents a new approach whose aim is to extent the scope of numerical models by providing them with accurate knowledge extraction capabilities. These capabilities are especially useful for the management of high dimensional data. The basic model which is considered in this paper is a multi-topographic neural network model. The powerful features of this model are its generalization mechanism and its mechanism of communication between topographies. These two mechanisms allow rule extraction to be performed whenever a single viewpoint or multiple viewpoints on the same data are considered. The presented approach aims at extracting the most informative rules. This approach relies on an original algorithm that can be used for incrementally extracting the generators and the closed itemsets of the dataset with a prior access to the information provided by the numerical clustering model
Databáze: OpenAIRE