A Propriedade de aproximação em espaços de funções holomorfas em domínios de Riemann
Autor: | Louza Júnior, Nelson Dantas, 1981 |
---|---|
Přispěvatelé: | Mujica, Jorge, 1946-2017, Vieira, Daniela Mariz Silva, Moraes, Luiza Amalia de, Botelho, Geraldo Marcio de Azevedo, Chiacchio, Ary Orozimbo, Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica, Programa de Pós-Graduação em Matemática, UNIVERSIDADE ESTADUAL DE CAMPINAS |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP) Universidade Estadual de Campinas (UNICAMP) instacron:UNICAMP |
DOI: | 10.47749/t/unicamp.2012.880567 |
Popis: | Orientador: Jorge Tulio Mujica Ascui Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica Resumo: Neste trabalho estabelecemos condições para que o predual do espaço H(?) de aplicações holomorfas em domínios de Riemann tenha a propriedade de aproximação e a propriedade de aproximação limitada. Para tal utilizamos fundamentalmente uma extensão do Teorema de Linearização de Mazet. Provamos que se E é um espaço localmente convexo com uma base de Schauder equicontínua, então o predual G(U) tem a propriedade de aproximação limitada para cada aberto equilibrado U C E. Provamos também que se E é um espaço de Fréchet separável com a propriedade de aproximação limitada, então G(? ) tem a propriedade de aproximação para cada domínio de Riemann (?; p) sobre E. Além disso, demonstramos que se (?; p) é um domínio de Riemann sobre um espaço (DFC) E, então E tem a propriedade de aproximação se, e só se G(?) tem a propriedade de aproximação se, e só se (H(?); Tc) tem a propriedade de aproximação Abstract: In this work we establish conditions for the predual of the space H(?) of holomorphic mappings in a Riemann domains , to have the approximation property and the bounded approximation property. For this we use essentially an extension of Mazet linearization theorem. We also prove tha if E is a locally convex space with an equicontinuos Schauder basis, then the predual G(U) has the bounded approximation property for each balanced open subset U of E. We obtain that if E is a separable Fréchet space with the bounded approximation property, then G(?) has the approximation property for each Riemann domains (?; p) over E. Moreover, we prove that if (?; p) is a Riemann domains over a (DFC)-space E, then E has the approximation property if only if G(? ) has the approximation property, if only if (H(?); Tc) has the approximation property Doutorado Matemática Doutor em Matemática |
Databáze: | OpenAIRE |
Externí odkaz: |