The CXC Chemokine-degrading Protease SpyCep of Streptococcus pyogenes Promotes Its Uptake into Endothelial Cells*
Autor: | Manfred Rohde, Victor Nizet, Gursharan S. Chhatwal, Simran J. Kaur, Susanne R. Talay, Annelies S. Zinkernagel, Marcus Fulde, Dorothea Zähner, Andreas Nerlich, Emanuel Hanski, Simone Bergmann |
---|---|
Přispěvatelé: | Department of Microbial Pathogenesis, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany., University of Zurich |
Jazyk: | angličtina |
Rok vydání: | 2010 |
Předmět: |
1303 Biochemistry
Endosome Streptococcus pyogenes medicine.medical_treatment media_common.quotation_subject 610 Medicine & health Endosomes Biology medicine.disease_cause Biochemistry Microbiology Antibodies Cell Line 10234 Clinic for Infectious Diseases 1307 Cell Biology 03 medical and health sciences 1312 Molecular Biology medicine Animals Humans Interleukin 8 Cloning Molecular Internalization Molecular Biology 030304 developmental biology media_common Serine protease 0303 health sciences Protease 030306 microbiology Interleukin-8 Endothelial Cells Cell Biology Molecular biology Endocytosis Cell biology Protein Structure Tertiary Endothelial stem cell Protein Transport Cell culture biology.protein Lysosomes Peptide Hydrolases |
Zdroj: | Journal of Biological Chemistry |
Popis: | Streptococcus pyogenes expresses the LPXTG motif-containing cell envelope serine protease SpyCep (also called ScpC, PrtS) that degrades and inactivates the major chemoattractant interleukin 8 (IL-8), thereby impairing host neutrophil recruitment. In this study, we identified a novel function of SpyCep: the ability to mediate uptake into primary human endothelial cells. SpyCep triggered its uptake into endothelial cells but not into human epithelial cells originating from pharynx or lung, indicating an endothelial cell-specific uptake mechanism. SpyCep mediated cellular invasion by an endosomal/lysosomal pathway distinct from the caveolae-mediated invasion pathway of S. pyogenes. Recombinant expression and purification of proteolytically active SpyCep and a series of subfragments allowed functional dissection of the domains responsible for endothelial cell invasion and IL-8 degradation. The N-terminal PR domain was sufficient to mediate endothelial cell invasion, whereas for IL-8-degrading activity, the protease domain and the flanking A domain were required. A polyclonal rabbit serum raised against the recombinant protease efficiently blocked the invasion-mediating activity of SpyCep but not its proteolytic function, further indicating that SpyCep-mediated internalization is independent from its enzymatic activity. SpyCep may thus specifically mediate its own uptake as secreted protein into human endothelial cells. |
Databáze: | OpenAIRE |
Externí odkaz: |