Using preference learning for detecting inconsistencies in clinical practice guidelines: Methods and application to antibiotherapy
Autor: | Jean-Baptiste Lamy, Karima Sedki, Rosy Tsopra |
---|---|
Přispěvatelé: | Laboratoire d'Informatique Médicale et Ingénierie des Connaissances en e-Santé (LIMICS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Sorbonne Paris Nord, Université Paris 13 (UP13)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM), This work was supported by the French drug agency (ANSM, Agence Nationale de Sécurité du Médicament et des produits de santé) through the RaMiPA project AAP 2016., Lamy, Jean-Baptiste, Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 (LAMIH), Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Centre National de la Recherche Scientifique (CNRS)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France) |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
020205 medical informatics
Computer science Knowledge Bases [SDV]Life Sciences [q-bio] Medicine (miscellaneous) 02 engineering and technology [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] Machine Learning 0302 clinical medicine MESH: Practice Guidelines as Topic [SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseases 0202 electrical engineering electronic engineering information engineering Data Mining 030212 general & internal medicine Preference learning Practice Patterns Physicians' MESH: Machine Learning Management science Inconsistencies in guidelines Bacterial Infections Preference Anti-Bacterial Agents 3. Good health Clinical Practice Antibiotherapy Knowledge base Practice Guidelines as Topic MESH: Guideline Adherence [SDV.MHEP.MI] Life Sciences [q-bio]/Human health and pathology/Infectious diseases Guideline Adherence Clinical practice guidelines [INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI] MESH: Knowledge Bases MESH: Bacterial Infections Context (language use) Primary care Clinical decision support system MESH: Primary Health Care Decision Support Techniques 03 medical and health sciences Artificial Intelligence MESH: Anti-Bacterial Agents Humans [INFO]Computer Science [cs] MESH: Humans Primary Health Care business.industry MESH: Data Mining MESH: Decision Support Techniques Decision Support Systems Clinical [SDV.SPEE] Life Sciences [q-bio]/Santé publique et épidémiologie MESH: Practice Patterns Physicians' MESH: Decision Support Systems Clinical [SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologie business |
Zdroj: | Artificial Intelligence in Medicine Artificial Intelligence in Medicine, Elsevier, 2018, 89, pp.24-33. ⟨10.1016/j.artmed.2018.04.013⟩ Artificial Intelligence in Medicine, In press, 89, pp.24-33. ⟨10.1016/j.artmed.2018.04.013⟩ Artificial Intelligence in Medicine, Elsevier, In press, 89, pp.24-33. ⟨10.1016/j.artmed.2018.04.013⟩ |
ISSN: | 0933-3657 |
DOI: | 10.1016/j.artmed.2018.04.013⟩ |
Popis: | International audience; Clinical practice guidelines provide evidence-based recommendations. However, many problems are reported, such as contradictions and inconsistencies. For example, guidelines recommend sulfamethoxazole/trimethoprim in child sinusitis, but they also state that there is a high bacteria resistance in this context. In this paper, we propose a method for the semi-automatic detection of inconsistencies in guidelines using preference learning, and we apply this method to antibiotherapy in primary care. The preference model was learned from the recommendations and from a knowledge base describing the domain. We successfully built a generic model suitable for all infectious diseases and patient profiles. This model includes both preferences and necessary features. It allowed the detection of 106 candidate inconsistencies which were analyzed by a medical expert. 55 inconsistencies were validated. We showed that therapeutic strategies of guidelines in antibiotherapy can be formalized by a preference model. In conclusion, we proposed an original approach, based on preferences, for modeling clinical guidelines. This model could be used in future clinical decision support systems for helping physicians to prescribe antibiotics. |
Databáze: | OpenAIRE |
Externí odkaz: |