Global Patterns of Recombination across Human Viruses
Autor: | Ioan Filip, Raul Rabadan, Juan Ángel Patiño-Galindo |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Linkage disequilibrium
viruses Computational biology Genome Viral Biology AcademicSubjects/SCI01180 Genome Evolution Molecular 03 medical and health sciences Genetics Humans Molecular Biology Ecology Evolution Behavior and Systematics Discoveries Phylogeny 030304 developmental biology virus evolution Recombination Genetic 0303 health sciences 030306 microbiology Breakpoint AcademicSubjects/SCI01130 RNA Genetic Variation recombination statistical learning Viral evolution Viruses Topological data analysis Adaptation Recombination |
Zdroj: | Molecular Biology and Evolution |
ISSN: | 1537-1719 0737-4038 |
Popis: | Viral recombination is a major evolutionary mechanism driving adaptation processes, such as the ability of host-switching. Understanding global patterns of recombination could help to identify underlying mechanisms and to evaluate the potential risks of rapid adaptation. Conventional approaches (e.g., those based on linkage disequilibrium) are computationally demanding or even intractable when sequence alignments include hundreds of sequences, common in viral data sets. We present a comprehensive analysis of recombination across 30 genomic alignments from viruses infecting humans. In order to scale the analysis and avoid the computational limitations of conventional approaches, we apply newly developed topological data analysis methods able to infer recombination rates for large data sets. We show that viruses, such as ZEBOV and MARV, consistently displayed low levels of recombination, whereas high levels of recombination were observed in Sarbecoviruses, HBV, HEV, Rhinovirus A, and HIV. We observe that recombination is more common in positive single-stranded RNA viruses than in negatively single-stranded RNA ones. Interestingly, the comparison across multiple viruses suggests an inverse correlation between genome length and recombination rate. Positional analyses of recombination breakpoints along viral genomes, combined with our approach, detected at least 39 nonuniform patterns of recombination (i.e., cold or hotspots) in 18 viral groups. Among these, noteworthy hotspots are found in MERS-CoV and Sarbecoviruses (at spike, Nucleocapsid and ORF8). In summary, we have developed a fast pipeline to measure recombination that, combined with other approaches, has allowed us to find both common and lineage-specific patterns of recombination among viruses with potential relevance in viral adaptation. |
Databáze: | OpenAIRE |
Externí odkaz: |