Oxygen carrier in core-shell fibers synthesized by coaxial electrospinning enhances Schwann cell survival and nerve regeneration
Autor: | Zhuojing Luo, Xin Quan, Yan Jin, Laihe Zhao, Lei Lu, Liangwei Mei, Jianbo Gao, Fengyu Qi, Yi Zheng, Bing Xia, Yafeng Yang, Teng Ma, Shengyou Li, Yanbing Shen, Jinghui Huang |
---|---|
Rok vydání: | 2020 |
Předmět: |
Male
Cell Survival Medicine (miscellaneous) chemistry.chemical_element Schwann cell 02 engineering and technology Oxygen Rats Sprague-Dawley 03 medical and health sciences In vivo medicine Animals Remyelination Hypoxia Pharmacology Toxicology and Pharmaceutics (miscellaneous) 030304 developmental biology 0303 health sciences Fluorocarbons Tissue Scaffolds Hypoxia (medical) Nerve injury 021001 nanoscience & nanotechnology Sciatic Nerve Nerve Regeneration Rats Perfluorotributylamine medicine.anatomical_structure chemistry Peripheral nerve injury Biophysics Coaxial electrospinning Sciatic nerve Schwann Cells medicine.symptom 0210 nano-technology Research Paper |
Zdroj: | Theranostics |
ISSN: | 1838-7640 |
Popis: | Rationale: Local hypoxia is a challenge for fabrication of cellular grafts and treatment of peripheral nerve injury. In our previous studies, we demonstrated that perfluorotributylamine (PFTBA) could provide short term oxygen supply to Schwann cells (SCs) and counteract the detrimental effects of hypoxia on SCs during the early stages of nerve injury. However, the quick release of oxygen in PFTBA compromised its ability to counteract hypoxia over an extended time, limiting its performance in peripheral nerve injury. Methods: In this study, PFTBA-based oxygen carrier systems were prepared through coaxial electrospinning to prolong the time course of oxygen release. Core-shell structures were fabricated, optimized, and the oxygen kinetics of PFTBA-enriched core-shell fibers evaluated. The effect of core-shells on the survival and function of SCs was examined in both 2D and 3D systems as well as in vivo. The system was used to bridge large sciatic nerve defects in rats. Results: PFTBA core-shell fibers provided high levels of oxygen to SCs in vitro, enhancing their survival, and increasing NGF, BDNF, and VEGF expression in 2D and 3D culture systems under hypoxic condition. In vivo analysis showed that the majority of GFP-expressing SCs in the PFTBA conduit remained viable 14 days post-implantation. We found that axons in PFTBA oxygen carrier scaffold improved axonal regeneration, remyelination, and recovery. Conclusion: A synthetic oxygen carrier in core-shell fibers was fabricated by the coaxial electrospinning technique and was capable of enhancing SC survival and nerve regeneration by prolonged oxygen supply. These findings provide a new strategy for fabricating cellular scaffolds to achieve regeneration in peripheral nerve injury treatment and other aerobic tissue injuries. |
Databáze: | OpenAIRE |
Externí odkaz: |