On spineless cacti, Deligne’s conjecture and Connes–Kreimer’s Hopf algebra
Autor: | Ralph M. Kaufmann |
---|---|
Rok vydání: | 2007 |
Předmět: |
Discrete mathematics
Renormalization Pure mathematics Conjecture String topology Algebraic structure Deligne’s conjecture Cell model Gerstenhaber algebra Hopf algebra Mathematics::Algebraic Topology Hochschild complex Formalism (philosophy of mathematics) Mathematics::K-Theory and Homology Little discs Mathematics::Category Theory Mathematics::Quantum Algebra Operads Cacti Geometry and Topology Mathematics |
Zdroj: | Topology. 46:39-88 |
ISSN: | 0040-9383 |
DOI: | 10.1016/j.top.2006.10.002 |
Popis: | Using a cell model for the little discs operad in terms of spineless cacti we give a minimal common topological operadic formalism for three a priori disparate algebraic structures: (1) a solution to Deligne’s conjecture on the Hochschild complex, (2) the Hopf algebra of Connes and Kreimer, and (3) the string topology of Chas and Sullivan. |
Databáze: | OpenAIRE |
Externí odkaz: |