Oblique stripe solutions of channel flow
Autor: | Chaitanya Paranjape, Björn Hof, Yohann Duguet |
---|---|
Přispěvatelé: | Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur (LIMSI), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Physics
Turbulence Mechanical Engineering Applied Mathematics Mathematical analysis Reynolds number Oblique case Condensed Matter Physics 01 natural sciences 010305 fluids & plasmas Open-channel flow Physics::Fluid Dynamics Nonlinear system symbols.namesake Mechanics of Materials 0103 physical sciences symbols Mean flow [NLIN]Nonlinear Sciences [physics] 010306 general physics Bifurcation Parametric statistics |
Zdroj: | Journal of Fluid Mechanics Journal of Fluid Mechanics, Cambridge University Press (CUP), 2020, 897, ⟨10.1017/jfm.2020.322⟩ |
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2020.322⟩ |
Popis: | International audience; With decreasing Reynolds number, Re, turbulence in channel flow becomes spatiotemporally intermittent and self-organises into solitary stripes oblique to the mean flow direction. We report here the existence of localised nonlinear travelling wave solutions of the Navier-Stokes equations possessing this obliqueness property. Such solutions are identified numerically using edge tracking coupled with arclength continuation. All solutions emerge in saddle-node bifurcations at values of Re lower than the non-localised solutions. Relative periodic orbit solutions bifurcating from branches of travelling waves have also been computed. A complete parametric study is performed, including their stability, the investigation of their large-scale flow, and the robustness to changes of the numerical domain. |
Databáze: | OpenAIRE |
Externí odkaz: |