Transient domains of ordered water induced by divalent ions lead to lipid membrane curvature fluctuations
Autor: | Sylvie Roke, Padmini Rangamani, Halil I. Okur, Orly B. Tarun |
---|---|
Přispěvatelé: | Okur, Halil I. |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
bilayer
Materials science liquid domains 1.1 Normal biological development and functioning 02 engineering and technology 010402 general chemistry Curvature 01 natural sciences Biochemistry Quantitative Biology::Cell Behavior Ion interfaces Membrane bending Quantitative Biology::Subcellular Processes lcsh:Chemistry Condensed Matter::Materials Science Underpinning research Materials Chemistry Environmental Chemistry Physics::Chemical Physics Lipid bilayer Membrane potential mechanisms Quantitative Biology::Biomolecules Physics::Biological Physics Charge density General Chemistry 021001 nanoscience & nanotechnology phase-separation proteins 0104 chemical sciences monolayers Membrane lcsh:QD1-999 Chemical physics Membrane curvature calcium-ions voltage flexoelectricity 0210 nano-technology |
Zdroj: | Communications Chemistry, Vol 3, Iss 1, Pp 1-8 (2020) Communications Chemistry Communications chemistry, vol 3, iss 1 |
ISSN: | 2399-3669 |
Popis: | Cations influence the electrostatic, chemical and mechanical properties of lipid bilayers. Here, label-free second harmonic microscopy shows that cation-induced transient ordering of water also plays a role in driving membrane curvature fluctuations, linking molecular hydration to macroscopic properties. Cell membranes are composed of a hydrated lipid bilayer that is molecularly complex and diverse, and the link between molecular hydration structure and membrane macroscopic properties is not well understood, due to a lack of technology that can probe and relate molecular level hydration information to micro- and macroscopic properties. Here, we demonstrate a direct link between lipid hydration structure and macroscopic dynamic curvature fluctuations. Using high-throughput wide-field second harmonic (SH) microscopy, we observe the formation of transient domains of ordered water at the interface of freestanding lipid membranes. These domains are induced by the binding of divalent ions and their structure is ion specific. Using nonlinear optical theory, we convert the spatiotemporal SH intensity into maps of membrane potential, surface charge density, and binding free energy. Using an electromechanical theory of membrane bending, we show that transient electric field gradients across the membrane induce spatiotemporal membrane curvature fluctuations. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |