Popis: |
Adverse cardiovascular events are a significant cause of mortality in end-stage renal disease (ESRD) patients. High-risk plaque anatomy may be a significant contributor. However, their atherosclerotic phenotypes have not been described. We sought to define atherosclerotic plaque characteristics (APC) in dialysis patients using artificial-intelligence augmented CCTA.We retrospectively analyzed ESRD patients referred for CCTA using an FDA approved artificial-intelligence augmented-CCTA program (Cleerly). Coronary lesions were evaluated for APCs by CCTA. APCs included percent atheroma volume(PAV), low-density non-calcified-plaque (LD-NCP), non-calcified-plaque (NCP), calcified-plaque (CP), length, and high-risk-plaque (HRP), defined by LD-NCP and positive arterial remodeling1.10 (PR).79 ESRD patients were enrolled, mean age 65.3 years, 32.9% female. Disease distribution was non-obstructive (65.8%), 1-vessel disease (21.5%), 2-vessel disease (7.6%), and 3-vessel disease (5.1%). Mean total plaque volume (TPV) was 810.0 mmOur study provides novel insight into ESRD plaque phenotypes and demonstrates that artificial-intelligence augmented CCTA analysis is feasible for CAD characterization despite severe calcification. We demonstrate elevated plaque burden and stenosis caused by predominantly non-calcified-plaque. Furthermore, the quantity of calcified-plaques increased with age, with men exhibiting increased number of 2-feature plaques and higher plaque volumes. Artificial-intelligence augmented CCTA analysis of APCs may be a promising metric for cardiac risk stratification and warrants further prospective investigation. |