Axisymmetric solutions for a chemotaxis model of Multiple Sclerosis
Autor: | Francesco Gargano, Maria Carmela Lombardo, Pietro Pantano, Valeria Giunta, Eleonora Bilotta, Marco Sammartino |
---|---|
Přispěvatelé: | Bilotta, E., Gargano, F., Giunta, V., Lombardo, M.C., Pantano, P., Sammartino, M. |
Rok vydání: | 2018 |
Předmět: |
Physics
Applied Mathematics General Mathematics Multiple sclerosis Numerical analysis 010102 general mathematics Mathematical analysis Rotational symmetry Chemotaxi Concentric medicine.disease 01 natural sciences Quantitative Biology::Cell Behavior 010305 fluids & plasmas Nonlinear system Amplitude Axisymmetric solution 0103 physical sciences medicine Mathematics (all) Multiple sclerosi 0101 mathematics Early phase Bifurcation |
Zdroj: | Ricerche di Matematica. 68:281-294 |
ISSN: | 1827-3491 0035-5038 |
DOI: | 10.1007/s11587-018-0406-8 |
Popis: | In this paper we study radially symmetric solutions for our recently proposed reaction–diffusion–chemotaxis model of Multiple Sclerosis. Through a weakly nonlinear expansion we classify the bifurcation at the onset and derive the amplitude equations ruling the formation of concentric demyelinating patterns which reproduce the concentric layers observed in Balò sclerosis and in the early phase of Multiple Sclerosis. We present numerical simulations which illustrate and fit the analytical results. |
Databáze: | OpenAIRE |
Externí odkaz: |