Asymptotic Models for the Electric Potential across a Highly Conductive Casing
Autor: | David Pardo, Victor Péron, Aralar Erdozain |
---|---|
Přispěvatelé: | Advanced 3D Numerical Modeling in Geophysics (Magique 3D), Laboratoire de Mathématiques et de leurs Applications [Pau] (LMAP), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS)-Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Université de Pau et des Pays de l'Adour (UPPA), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS), University of the Basque Country [Bizkaia] (UPV/EHU), Basque Center for Applied Mathematics (BCAM), Basque Center for Applied Mathematics, Basque Foundation for Science (Ikerbasque), European Project: 644202,H2020 Pilier Excellent Science,H2020-MSCA-RISE-2014,GEAGAM(2015), European Project: 777778,H2020-EU.1.3.3.,MATHROCKS(2018), University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU), Ikerbasque - Basque Foundation for Science |
Rok vydání: | 2018 |
Předmět: |
impedance conditions
thin layer Finite element method finite element method Borehole borehole asymptotic models 010502 geochemistry & geophysics 01 natural sciences Stability (probability) electric potential Convergence (routing) Thin layer [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] 0101 mathematics Electrical conductor 0105 earth and related environmental sciences Mathematics Numerical analysis Mathematical analysis Impedance conditions Asymptotic models 010101 applied mathematics Computational Mathematics Electric potential Computational Theory and Mathematics Modeling and Simulation Casing [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] |
Zdroj: | BIRD: BCAM's Institutional Repository Data instname Computers & Mathematics with Applications Computers & Mathematics with Applications, Elsevier, 2018 HAL Computers & Mathematics with Applications, 2018 |
ISSN: | 0898-1221 |
Popis: | International audience; We analyze a configuration that involves a steel-cased borehole, where the casing that covers the borehole is considered as a highly conductive thin layer. We develop an asymptotic method for deriving reduced problems capable of efficiently dealing with the numerical difficulties caused by the casing when applying traditional numerical methods. We derive several reduced models by employing two different approaches, each of them leading to different classes of models. We prove stability and convergence results for these models. The theoretical orders of convergence are supported by numerical results obtained with the finite element method. |
Databáze: | OpenAIRE |
Externí odkaz: |