On the origin of phase transitions in the absence of symmetry-breaking

Autor: Giulio Pettini, Marco Pettini, Cecilia Clementi, Roberto Franzosi, Matteo Gori
Přispěvatelé: Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), CPT - E7 Systèmes dynamiques : théories et applications, Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), C.N.I.S.M. UdR di Firenze and Dipartimento di Fisica, Università degli Studi di Firenze = University of Florence [Firenze] (UNIFI), Università degli Studi di Firenze = University of Florence (UniFI)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Physica A: Statistical Mechanics and its Applications
Physica A: Statistical Mechanics and its Applications, Elsevier, 2019, 516, pp.376-392. ⟨10.1016/j.physa.2018.10.001⟩
Physica A: Statistical Mechanics and its Applications, 2019, 516, pp.376-392. ⟨10.1016/j.physa.2018.10.001⟩
Physica. A
516 (2019): 376–392. doi:10.1016/j.physa.2018.10.001
info:cnr-pdr/source/autori:Pettini, Giulio; Gori, Matteo; Franzosi, Roberto; Clementi, Cecilia; Pettini, Marco/titolo:On the origin of phase transitions in the absence of symmetry-breaking/doi:10.1016%2Fj.physa.2018.10.001/rivista:Physica. A (Print)/anno:2019/pagina_da:376/pagina_a:392/intervallo_pagine:376–392/volume:516
ISSN: 0378-4371
Popis: In this paper we investigate the Hamiltonian dynamics of a lattice gauge model in three spatial dimension. Our model Hamiltonian is defined on the basis of a continuum version of a duality transformation of a three dimensional Ising model. The system so obtained undergoes a thermodynamic phase transition in the absence of symmetry-breaking. Besides the well known use of quantities like the Wilson loop we show how else the phase transition in such a kind of models can be detected. It is found that the first order phase transition undergone by this model is characterised according to an Ehrenfest-like classification of phase transitions applied to the configurational entropy. On the basis of the topological theory of phase transitions, it is discussed why the seemingly divergent behaviour of the third derivative of configurational entropy can be considered as the "shadow" of some suitable topological transition of certain submanifolds of configuration space.
31 pages, 9 figures
Databáze: OpenAIRE