Dense Passage Retrieval for Open-Domain Question Answering

Autor: Sergey Edunov, Wen-tau Yih, Danqi Chen, Vladimir Karpukhin, Sewon Min, Barlas Oguz, Patrick S. H. Lewis, Ledell Wu
Rok vydání: 2020
Předmět:
Zdroj: EMNLP (1)
DOI: 10.48550/arxiv.2004.04906
Popis: Open-domain question answering relies on efficient passage retrieval to select candidate contexts, where traditional sparse vector space models, such as TF-IDF or BM25, are the de facto method. In this work, we show that retrieval can be practically implemented using dense representations alone, where embeddings are learned from a small number of questions and passages by a simple dual-encoder framework. When evaluated on a wide range of open-domain QA datasets, our dense retriever outperforms a strong Lucene-BM25 system largely by 9%-19% absolute in terms of top-20 passage retrieval accuracy, and helps our end-to-end QA system establish new state-of-the-art on multiple open-domain QA benchmarks.
Comment: EMNLP 2020
Databáze: OpenAIRE