Acute and chronic exposure to air pollution in relation with incidence, prevalence, severity and mortality of COVID-19: a rapid systematic review

Autor: Paul Musa Obadia, Jeroen Vanoirbeek, Amanda Brand, Célestin Banza Lubaba Nkulu, Peter Hoet, Carsi Kuhangana, Tony Kayembe-Kitenge, Benoit Nemery, Joseph Pyana Kitenge, Buket Bakan, Patrick D. M. C. Katoto, Tim S. Nawrot
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Pollution
medicine.medical_specialty
Long-term air pollution
Health
Toxicology and Mutagenesis

media_common.quotation_subject
Nitrogen Dioxide
Review
Burden
010501 environmental sciences
01 natural sciences
lcsh:RC963-969
03 medical and health sciences
Ozone
0302 clinical medicine
Air Pollution
Environmental health
Epidemiology
Prevalence
Humans
Sulfur Dioxide
Medicine
030212 general & internal medicine
0105 earth and related environmental sciences
media_common
Pollutant
Air Pollutants
Lethality
business.industry
SARS-CoV-2
Incidence
lcsh:Public aspects of medicine
Incidence (epidemiology)
Public health
Mortality rate
Short-term
Confounding
Public Health
Environmental and Occupational Health

COVID-19
lcsh:RA1-1270
Environmental Exposure
Environmental exposure
Prognosis
Susceptibility
lcsh:Industrial medicine. Industrial hygiene
Particulate Matter
business
Zdroj: Environmental Health, Vol 20, Iss 1, Pp 1-21 (2021)
Environmental Health
Popis: Background Air pollution is one of the world’s leading mortality risk factors contributing to seven million deaths annually. COVID-19 pandemic has claimed about one million deaths in less than a year. However, it is unclear whether exposure to acute and chronic air pollution influences the COVID-19 epidemiologic curve. Methods We searched for relevant studies listed in six electronic databases between December 2019 and September 2020. We applied no language or publication status limits. Studies presented as original articles, studies that assessed risk, incidence, prevalence, or lethality of COVID-19 in relation with exposure to either short-term or long-term exposure to ambient air pollution were included. All patients regardless of age, sex and location diagnosed as having COVID-19 of any severity were taken into consideration. We synthesised results using harvest plots based on effect direction. Results Included studies were cross-sectional (n = 10), retrospective cohorts (n = 9), ecological (n = 6 of which two were time-series) and hypothesis (n = 1). Of these studies, 52 and 48% assessed the effect of short-term and long-term pollutant exposure, respectively and one evaluated both. Pollutants mostly studied were PM2.5 (64%), NO2 (50%), PM10 (43%) and O3 (29%) for acute effects and PM2.5 (85%), NO2 (39%) and O3 (23%) then PM10 (15%) for chronic effects. Most assessed COVID-19 outcomes were incidence and mortality rate. Acutely, pollutants independently associated with COVID-19 incidence and mortality were first PM2.5 then PM10, NO2 and O3 (only for incident cases). Chronically, similar relationships were found for PM2.5 and NO2. High overall risk of bias judgments (86 and 39% in short-term and long-term exposure studies, respectively) was predominantly due to a failure to adjust aggregated data for important confounders, and to a lesser extent because of a lack of comparative analysis. Conclusion The body of evidence indicates that both acute and chronic exposure to air pollution can affect COVID-19 epidemiology. The evidence is unclear for acute exposure due to a higher level of bias in existing studies as compared to moderate evidence with chronic exposure. Public health interventions that help minimize anthropogenic pollutant source and socio-economic injustice/disparities may reduce the planetary threat posed by both COVID-19 and air pollution pandemics.
Databáze: OpenAIRE