Diverse responses of common vole (Microtus arvalis) populations to Late Glacial and Early Holocene climate changes – Evidence from ancient DNA
Autor: | Emmanuel Desclaux, Katarzyna Baca, Xabier Murelaga, Jarosław Wilczyński, Magdalena Krajcarz, Monika Knul, Barbara Miękina, Evelyne Crégut-Bonnoure, Ivan Horáček, Anna Lemanik, Jadranka Mauch Lenardić, Claudio Berto, Karolina Doan, Gloria Cuenca-Bescós, Mateusz Baca, Piroska Pazonyi, Danijela Popović, Juan Manuel López-García, Adam Nadachowski, Alexandru Petculescu, John R. Stewart, Zoran Marković, Sandra Bañuls-Cardona |
---|---|
Přispěvatelé: | Institute of Systematics and Evolution of Animals, Polish Academy of Sciences (PAN), Culture et Environnements, Préhistoire, Antiquité, Moyen-Age (CEPAM), Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Travaux et recherches archéologiques sur les cultures, les espaces et les sociétés (TRACES), École des hautes études en sciences sociales (EHESS)-Université Toulouse - Jean Jaurès (UT2J)-Ministère de la Culture et de la Communication (MCC)-Centre National de la Recherche Scientifique (CNRS), Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA) |
Rok vydání: | 2020 |
Předmět: |
010506 paleontology
Archeology post-glacial recolonization Younger Dryas 010504 meteorology & atmospheric sciences Pleistocene Climate change 01 natural sciences Glacial period common vole mtDNA post-glacial recolonization ancient DNA Younger Dryas Holocene common vole ancient DNA Ecology Evolution Behavior and Systematics Holocene 0105 earth and related environmental sciences Global and Planetary Change biology mtDNA Ecology Geology Last Glacial Maximum 15. Life on land biology.organism_classification humanities Ancient DNA Geography 13. Climate action Vole [SDU.STU.PG]Sciences of the Universe [physics]/Earth Sciences/Paleontology |
Zdroj: | Zaguán. Repositorio Digital de la Universidad de Zaragoza instname Quaternary Science Reviews Quaternary Science Reviews, Elsevier, 2020, 233, pp.106239. ⟨10.1016/j.quascirev.2020.106239⟩ |
ISSN: | 0277-3791 |
DOI: | 10.1016/j.quascirev.2020.106239⟩ |
Popis: | The harsh climatic conditions during the Last Glacial Maximum (LGM) period have been considered the cause of local extinctions and major faunal reorganizations that took place at the end of the Pleistocene. Recent studies have shown, however, that in addition many of these ecological events were associated with abrupt climate changes during the so-called Late Glacial and the Pleistocene/Holocene transition. Here we used ancient DNA to investigate the impact of those changes on common vole (Microtus arvalis) populations in Europe. The common vole is a temperate rodent species widespread in Europe. The genetic diversity of modern populations and the fossil record suggests that the species may have survived cold episodes, like LGM, not only in the traditional Mediterranean glacial refugia but also at higher latitudes in cryptic northern refugia located in Central France, the northern Alps as well as the Carpathians. However, the details of the post-glacial recolonization and the impact of the Late Glacial and Early Holocene climate changes on the evolutionary history of the common vole remains unclear. To address this issue, we analysed mtDNA cytochrome b sequences from more than one hundred common vole specimens from 36 paleontological and archaeological sites scattered across Europe. Our data suggest that populations from the European mid- and high latitudes suffered a local population extinction and contraction as a result of Late Glacial and Early Holocene climate and environmental changes. The recolonization of earlier abandoned areas took place in the Mid- to Late Holocene. In contrast, at low latitudes, in Northern Spain there was a continuity of common vole populations. This indicates different responses of common vole populations to climate and environmental changes across Europe and corroborates the hypothesis that abrupt changes, like those associated with Younger Dryas and the Pleistocene/Holocene transition, had a significant impact on populations at the mid- and high latitudes of Europe. |
Databáze: | OpenAIRE |
Externí odkaz: |