Inverting operations in operads
Autor: | Kate Ponto, Maria Basterra, Sarah Yeakel, Ulrike Tillmann, Irina Bobkova |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
Pure mathematics
Functor 18C15 18D50 55P48 Homotopy 010102 general mathematics Mathematics - Category Theory Construct (python library) 01 natural sciences Mathematics::Algebraic Topology law.invention Invertible matrix law Mathematics::K-Theory and Homology Mathematics::Category Theory 0103 physical sciences FOS: Mathematics Algebraic Topology (math.AT) Canonical map Universal property Category Theory (math.CT) 010307 mathematical physics Geometry and Topology Mathematics - Algebraic Topology 0101 mathematics Mathematics |
Popis: | We construct a localization for operads with respect to one-ary operations based on the Dwyer-Kan hammock localization. For an operad O and a sub-monoid of one-ary operations W we associate an operad LO and a canonical map O to LO which takes elements in W to homotopy invertible operations. Furthermore, we give a functor from the category of O-algebras to the category of LO-algebras satisfying an appropriate universal property. This paper represents part of the authors' Women in Topology project |
Databáze: | OpenAIRE |
Externí odkaz: |