ON STRUCTURAL AND GRAPH THEORETIC PROPERTIES OF HIGHER ORDER DELAUNAY GRAPHS

Autor: Prosenjit Bose, Carlos M. Nicolas, Jesús García, Pedro Ramos, Ferran Hurtado, Manuel Abellanas
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya. DCCG - Grup de recerca en geometria computacional, combinatoria i discreta
Rok vydání: 2009
Předmět:
Zdroj: Recercat. Dipósit de la Recerca de Catalunya
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
ISSN: 1793-6357
0218-1959
DOI: 10.1142/s0218195909003143
Popis: Given a set $\emph{P}$ of $\emph{n}$ points in the plane, the order-$\emph{k}$ Delaunay graph is a graph with vertex set $\emph{P}$ and an edge exists between two points p,q ∊ $\emph{P}$ when there is a circle through $\emph{p}$ and $\emph{q}$ with at most $\emph{k}$ other points of $\emph{P}$ in its interior. We provide upper and lower bounds on the number of edges in an order-$\emph{k}$ Delaunay graph. We study the combinatorial structure of the set of triangulations that can be constructed with edges of this graph. Furthermore, we show that the order-$\emph{k}$ Delaunay graph is connected under the flip operation when $\emph{k}$ ≤ 1 but not necessarily connected for other values of $\emph{k}$. If $\emph{P}$ is in convex position then the order-$\emph{k}$ Delaunay graph is connected for all $\emph{k}$ ≥ 0. We show that the order-$\emph{k}$ Gabriel graph, a subgraph of the order-$\emph{k}$ Delaunay graph, is Hamiltonian for $\emph{k}$ ≥ 15. Finally, the order-$\emph{k}$ Delaunay graph can be used to effciently solve a coloring problem with applications to frequency assignments in cellular networks.
Databáze: OpenAIRE