A class of robust numerical schemes to compute front propagation

Autor: Nicolas Therme
Přispěvatelé: Laboratoire de Mathématiques Jean Leray (LMJL), Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)
Rok vydání: 2018
Předmět:
Zdroj: The SMAI journal of computational mathematics. 4:375-397
ISSN: 2426-8399
DOI: 10.5802/smai-jcm.39
Popis: In this work a class of finite volume schemes is proposed to numerically solve equations involving propagating fronts. They fall into the class of Hamilton-Jacobi equations. Finite volume schemes based on staggered grids, and initially developed to compute fluid flows, are adapted to the G-equation, using the Hamilton-Jacobi theoretical framework. The designed scheme has a maximum principle property and is consistent an monotonous on Cartesian grids. A convergence property is then obtained for the scheme on Cartesian grids and numerical experiments evidence the convergence of the scheme on more general meshes.
Databáze: OpenAIRE