Myeloid differentiation-2 is a potential biomarker for the amplification process of allergic airway sensitization in mice

Autor: Yoshitaka Shintani, Kazumichi Kuroda, Daisuke Koyama, Sotaro Shikano, Yasuhiro Gon, Tadataka Sekiyama, Hisato Hiranuma, Ikuko Takeshita, Shu Hashimoto, Eriko Tsuboi, Kaori Soda, Shuichiro Maruoka
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: Allergology International, Vol 64, Iss S, Pp S37-S45 (2015)
ISSN: 1323-8930
Popis: Background Allergic sensitization is a key step in the pathogenesis of asthma. However, little is known about the molecules that are critical regulators for establishing allergic sensitization of the airway. Thus, we conducted global gene expression profiling to identify candidate genes and signaling pathways involved in house dust mite (HDM)-induced allergic sensitization in the murine airway. Methods We sensitized and challenged mice with HDM or saline as a control through the airway on days 1 and 8. We evaluated eosinophilia in bronchoalveolar lavage fluid (BALF), airway inflammation, and mucus production on days 7 and 14. We extracted total RNA from lung tissues of HDM- and saline-sensitized mice on days 7 and 14. Microarray analyses were performed to identify up-regulated genes in the lungs of HDM-sensitized mice compared to the control mice. Data analyses were performed using GeneSpring software and gene networks were generated using Ingenuity Pathways Analysis (IPA). Results We identified 50 HDM-mediated, stepwise up-regulated genes in response to allergic sensitization and amplification of allergic airway inflammation. The highest expressed gene was myeloid differentiation-2 (MD-2), a lipopolysaccharide (LPS)-binding component of Toll-like receptor (TLR) 4 signaling complex. MD-2 protein was expressed in lung vascular endothelial cells and was increased in the serum of HDM-sensitized mice, but not in the control mice. Conclusions Our data suggest MD-2 is a critical regulator of the establishment of allergic airway sensitization to HDM in mice. Serum MD-2 may represent a potential biomarker for the amplification of allergic sensitization and allergic inflammation.
Databáze: OpenAIRE