HeMI ++: A Genetic Algorithm based Clustering Technique for Sensible Clusters

Autor: A. H. Beg, Zahidul Islam, Vladimir Estivill-Castro
Rok vydání: 2020
Předmět:
Zdroj: CEC
Charles Sturt University
DOI: 10.1109/cec48606.2020.9185882
Popis: Comunicació presentada al IEEE Congress on Evolutionary Computation (CEC 2020), celebrat del 19 al 24 de juliol de 2020 a Glasgow, Escòcia. We propose a new clustering technique called HeMI++. It uses cleansing and cloning operations that help to produce sensible clusters. HeMI++ learns necessary properties of a good clustering solution for a dataset from a high-quality initial population, without requiring any user input. It then disqualifies the chromosomes that do not satisfy the properties through its cleansing operation. In the cloning operation, HeMI++ replaces the chromosomes by high-quality chromosomes already found in the initial population. We compare HeMI++ with six (6) existing techniques on twenty (20) publicly available datasets using the Tree Index metric. Our experimental results indicate a clear superiority of HeMI++ over existing methods. We also apply HeMI++ on a brain dataset and demonstrate its ability to produce sensible clusters.
Databáze: OpenAIRE